Technological Revolution and Educational Equity: How Artificial Intelligence Reshapes Educational Opportunities
Jin Min1, Cao Peijie2, Huang Baozhong3
1.Women’s Hospital School of Medicine Zhejiang University, Hangzhou 310006, China 2.Digital Education Research Institute, China National Academy of Educational Sciences, Beijing 100088, China 3.Science Data Hub Center, Zhejiang Lab, Hangzhou 311112, China
Abstract:The rapid development of artificial intelligence (AI) technology is profoundly reshaping the education ecosystem, bringing many new opportunities and challenges for the promotion of educational equity. Based on the perspective of educational equity, this study systematically analyzes the connotation, path and value orientation of AI-enabled educational equity through the multiple dimensions of theoretical tracing, reality mapping, conceptual reshaping and future vision.The study has found that artificial intelligence is driving education informatization from quantitative change to qualitative change, providing unprecedented technological support for tailored teaching and personalized learning. In terms of educational opportunities, AI technology helps build online education platforms, effectively bridging the digital divide between urban and rural education; supports the construction of intelligent learning systems, providing students with personalized and adaptive learning experiences; and promotes the ubiquitous supply of educational resources, improving the flexibility of educational opportunities. In the education process, intelligent technology supports the realization of tailor-made teaching, so that the unique needs of each student can be fully satisfied; provides strong support for differentiated teaching, and strives to narrow the education quality gap between different students; drives the development of intelligent learning companions, and greatly expands the spatial and temporal scope of personalized teaching services available to learners. In terms of education results, AI can comprehensively assess students’ comprehensive quality based on multiple data, support precise and developmental evaluation of students’ personality growth, and promote the continuity and ecology of education evaluation.However, new types of risks, such as algorithmic bias and data privacy, should not be ignored, and it is necessary to strengthen the construction of technical ethics. The homogenization tendency of intelligent recommendation systems may aggravate the Matthew effect in the distribution of quality education resources; the improper use of education data may infringe on students’ privacy and produce group labeling effects; and the black-box algorithmic design may deprive the education process of the humanistic care it deserves.In the future, we should uphold the concept of science and technology for the good, and promote collaborative innovation in educational theory and practice. In terms of human-machine collaboration, we should promote the deep involvement of artificial intelligence systems in the whole process of teaching and learning, and provide intelligent support for personalized learning. In the reconstruction of teachers’ roles, it is necessary to promote the transformation of teachers from “teaching craftsmen” to “guides”, dedicated to fostering holistic student development and value-based guidance. In terms of education governance reform, we need to utilize knowledge map, big model and other technologies to drive education decision-making from experience-driven to data-driven transformation. In the area of digital literacy enhancement, it should be used as a strategic tool to promote educational equity, narrow the digital divide and realize equal opportunities for development.In short, we should give full play to the advantages of artificial intelligence while not ignoring the humanistic care adhere to the people-oriented, student development as the center, in order to make artificial intelligence truly become a tool to empower teachers, service education, and contribute wisdom and strength to the construction of a strong educational country. This requires the coordinated advancement of education theory and practice, policy innovation and system supply, technological progress and humanistic care.
1 习近平:《决胜全面建成小康社会 夺取新时代中国特色社会主义伟大胜利——在中国共产党第十九次全国代表大会上的报告》,2017年10月27日,https://www.gov.cn/zhuanti/2017-10/27/content_5234876.htm,2024年5月24日。 2 《中共中央、国务院印发〈中国教育现代化2035〉》,2019年2月23日,https://www.gov.cn/zhengce/2019-02/23/content_5367987.htm,2024年5月24日。 3 习近平:《高举中国特色社会主义伟大旗帜 为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告》,《中华人民共和国国务院公报》2022年第30期,第4-27页。 4 《国务院关于印发新一代人工智能发展规划的通知》,2017年7月20日,https://www.gov.cn/zhengce/content/2017-07/20/content_5211996,2024年5月24日。 5 《教育部关于印发〈高等学校人工智能创新行动计划〉的通知》,2018年4月10日,http://www.moe.gov.cn/srcsite/A16/s7062/201804/t20180410_332722.html,2024年5月24日。 6 吴阳:《教育部部长:将实施人工智能赋能行动,促进智能技术与教育教学、科学研究深度融合》,2024年2月1日,http://www.moe.gov.cn/jyb_xwfb/xw_zt/moe_357/2024/2024_zt02/mtbd/202402/t20240202_1114004.html,2024年5月24日。 7 钟志贤、胡飞:《教育数据思维应用的五大陷阱》,《中小学数字化教学》2024年第3期,第29-33页。 8 中共中央马克思恩格斯列宁斯大林著作编译局编译:《马克思恩格斯文集》第5卷,北京:人民出版社,2009年。 9 胡先云、刘邵岚:《英国义务教育法规的演进及启示》,《教学与管理》2009年第28期,第77-79页。 10 Anderson F. M., The Constitutions and Other Select Documents Illustrative of the History of France 1789-1907, New York: H. W. Wilson Company, 1908. 11 妥洪岩:《诺亚·韦伯斯特〈美国拼写书〉研究》,青海:青海人民出版社,2019年。 12 Callahan R. E., Education and the Cult of Efficiency: A Study of the Social Forces That Have Shaped the Administration of the Public Schools, Chicago: University of Chicago Press, 2010. 13 Bowles S. & Gintis H., Schooling in Capitalist America: Educational Reform and the Contradictions of Economic Life, New York: Basic Books, 1976. 14 美]丹尼尔·贝尔:《后工业社会的来临》,高铦、王宏周、魏章玲译,南昌:江西人民出版社,2018年。 15 王浩楠、郭绍青:《国家智慧教育平台赋能义务教育优质均衡发展的价值逻辑与实践路径》,《中国远程教育》2023年第9期,第48-55页。 16 李玲静、汪存友:《Knewton:学习分析支持下的自适应学习平台》,《成人教育》2019第7期,第29-34页。 17 Dávila A., “Wiggins, G., & McTighe, J. (2005) Understanding by Design (2nd ed.). Alexandria, VA: Association for Supervision and Curriculum Development (ASCD),” Colombian Applied Linguistics Journal, Vol. 19, No. 1 (2005), pp. 140-142. 18 Shakya A., Rus V. & Venugopal D., “Scalable and equitable math problem solving strategy prediction in big educational data,” 2023-08-07, https://arxiv.org/abs/2308.03892, 2025-03-26. 19 屠明将、吴南中:《“智慧学伴”何以改进学习:在线教育的交互危机与理念再造》,《电化教育研究》2023年第4期,第65-71页。 20 范红霞、孙金波:《大数据时代算法偏见与数字魔咒——兼谈“信息茧房”的破局》,《中国出版》2019年第10期,第60-63页。 21 盖君芳、黄宝忠:《教育人工智能:新的革命》,《浙江大学学报(人文社会科学版)》2022年第6期,第53-65页。 22 王善迈:《教育公平的分析框架和评价指标》,《北京师范大学学报(社会科学版)》2008年第3期,第93-97页。 23 朱亚鹏、史孟婷:《中学教育城乡差别对教育水平及地位获得影响的实证研究——基于中国劳动力动态调查(2012)的数据分析》,《中国公共政策评论》2014年第8期,第11-25页。 24 王硕烁、马玉慧:《国外典型自适应学习平台的基本框架及其关键技术分析》,《开放学习研究》2018年第23期,第48-54页。 25 Dhananjaya G. M., Goudar R. H. & Kulkarni A. et al., “A digital recommendation system for personalized learning to enhance online education: a review,” IEEE Access, Vol. 12 (2024), pp. 34019-34041. 26 李康康、卢颖翔、杨现民:《大语言模型赋能智能学伴:系统架构与风险防控》,《现代远程教育研究》2024年第3期,第20-28页。 27 杨现民、郭利明、王东丽等:《数据驱动教育治理现代化:实践框架、现实挑战与实施路径》,《现代远程教育研究》2020年第2期,第73-84页。 28 李建民:《破除功利化 让教育回归育人本位》,《光明日报》2019年12月10日,第13版。 29 郑永和、王一岩:《智能时代教育信息科学与技术的战略定位与发展方向》,《远程教育杂志》2023年第3期,第12-20页。 30 曹培杰:《人工智能教育变革的三重境界》,《教育研究》2020年第2期,第143-150页。 31 朱成晨、闫广芬:《现代化与专业化:大数据时代教育评价的新技术推进逻辑》,《清华大学教育研究》2018年第5期,第75-80页。 32 赵春燕:《希沃让深度学习更加真实地发生》,《小学科学(教师版)》2020年第19期,第21-24页。 33 唐静怡:《成长记录袋在小学生综合素质评价中的应用研究》,《天津教育》2021年第24期,第71-72页。 34 Mehrabi N., Morstatter F. & Saxena N. et al., “A survey on bias and fairness in machine learning,” ACM Computing Surveys, Vol. 54, No. 6 (2021), pp. 1-35. 35 Oyeniran C. O., Adewusi A. O. & Adeleke A. G. et al.,“Ethical AI: addressing bias in machine learning models and software applications,” Computer Science & IT Research Journal, Vol. 3, No. 3 (2022), pp. 115-126. 36 Zhenzhen L., “The shadow of the algorithm: the ethical blind spot of artificial intelligence education,” Journal of Education, Humanities and Social Sciences, Vol. 26 (2024), pp. 1146-1152. 37 Nathanson L., Corcoran S. & Baker-Smith C., High School Choice in New York City: A Report on the School Choices and Placements of Low-Achieving Students, Washington, DC: Center for American Progress, 2013. 38 Andrejevic M. & Selwyn N., “Facial recognition technology in schools: critical questions and concerns,” Learning, Media and Technology, Vol. 45, No. 2 (2019), pp. 115-128. 39 Li X. Z. & Hong L. Y., “Mathematically intelligent human-computer collaborative teaching: opportunities, challenges and countermeasures,” International Educational Research, Vol. 7, No. 3 (2024), pp. 11-18. 40 Shi W., Nie Z. & Shi Y., “Research on the design and implementation of intelligent tutoring system based on AI big model,” https://doi.org/10.1109/ICUS58632.2023.10318499, 2024-04-03. 41 岳伟、苏灵敏:《学会学习:智能时代学习方式变革的本质透视》,《广西师范大学学报(哲学社会科学版)》2023年第4期,第58-67页。 42 顾小清、李世瑾:《人工智能促进未来教育发展:本质内涵与应然路向》,《华东师范大学学报(教育科学版)》2022年第9期,第1-9页。 43 阳镇、王文娜:《数字经济国际竞争力:国际经验与中国路径》,《上海财经大学学报》2024年第4期,第18-31页。 44 Huynh L. D., Chen Y. F. & Erdenebayar S. et al., “Does financial literacy matter with national competitiveness? the role of digital capability,” International Journal of Innovation in Management, Vol. 12 (2024), pp. 13-20. 45 《教育部关于印发〈教育信息化2.0行动计划〉的通知》,2018年4月18日,http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html,2024年4月3日。 46 张新民、张稷锋:《论教育技术向善:基于技术反噬公平的视角》,《四川师范大学学报(社会科学版)》2023年第3期,第107-116页。 47 杨晓慧:《高等教育“三全育人”:理论意蕴、现实难题与实践路径》,《中国高等教育》2018年第18期,第4-8页。 48 杨俊锋、褚娟、张斌贤:《人工智能教育应用伦理规范指标构建研究》,《电化教育研究》2024年第10期,第19-27页。