Abstract:This study delves into how Artificial Intelligence (AI) enhancement and substitution impact employees by affecting dimensions of psychological empowerment—self-determination, meaningness, competence, and impact—and subsequently influence their work engagement and deviant innovative behaviors. Employing the theory of psychological empowerment as its theoretical framework, the study not only reveals the dual effects of AI technology but also thoroughly analyzes how these technologies influence employees’ psychological status and thus alter their behavioral performances, thereby providing strategic guidance for organizations in balancing the application of technology with the psychological status of employees during AI strategy implementation.In constructing the theoretical framework, the study clearly differentiates between AI augmentation and AI automation and their specific impacts on employee psychological empowerment. AI augmentation refers to the use of AI technology to assist humans in improving work efficiency and decision-making quality, supporting employees in performing more complex tasks through tools and systems, whereas AI automation refers to AI technology replacing humans in performing specific tasks, potentially diminishing employees’ participation and autonomy in their work.To rigorously test the theoretical model and hypotheses, the study designed a multi-time point survey covering multiple industries and job positions, collecting data from 505 participants. Following data collection, the study validated the reliability and validity of the survey scales used, showing good reliability and validity for its employed scales. Subsequently, Ordinary Least Squares (OLS) regression analysis was conducted using SPSS 26.0 software in conjunction with the PROCESS 3.3 macro, performing 5,000 bias-corrected bootstrap samples to ensure the accuracy and robustness of the results.Empirical analysis shows that AI automation significantly reduces employee job involvement by diminishing their sense of self-determination and meaning, thereby positively promoting bootlegging behavior. Conversely, AI augmentation significantly increases work engagement by enhancing employees’ competence and impact, thus negatively affecting bootlegging behavior. These findings reveal the complex impacts of AI technology in organizational applications and highlight the necessity of considering employee psychological empowerment and work engagement during the implementation of technology. Moreover, the study segmented the survey samples into employees in technical and non-technical positions, retesting the chain mediation effect in both subsamples, which supported the research hypotheses and enhanced the robustness of the results.The theoretical contribution of this paper lies in its application and expansion of psychological empowerment theory within the context of organizational AI applications, offering a new perspective on understanding the impact of technology. Additionally, the research findings provide valuable insights for management practices, particularly in how AI technology can support employee development and stimulate innovative behaviors. The comprehensive analysis not only deepens our understanding of the impacts of AI technology but also provides significant implications and directions for future research and practice.
1 谢康、卢鹏、盛君叶等:《人工智能、产品创新与制造业适应性转型》,《北京交通大学学报(社会科学版)》2024年第1期,第84-95页。 2 涂艳、蒿坡、龙立荣:《工作替代还是工作转型?技术型工作不安全感的内涵、影响后果及来源》,《心理科学进展》2023第8期,第1359-1373页。 3 谢萌萌、夏炎、潘教峰等:《人工智能、技术进步与低技能就业——基于中国制造业企业的实证研究》,《中国管理科学》2021年第12期,第54-66页。 4 Braganza A., Chen W. & Canhoto A. et al., “Gigification, job engagement and satisfaction: the moderating role of AI enabled system automation in operations management,” Production Planning & Control, Vol. 33, No. 16 (2022), pp. 1534-1547. 5 Dengler K. & Gundert S., “Digital transformation and subjective job insecurity in Germany,” European Sociological Review, Vol. 37, No. 5 (2021), pp. 799-817. 6 尹萌、牛雄鹰:《与AI“共舞”:系统化视角下的AI-员工协作》,《心理科学进展》2024第1期,第162-176页。 7 Jia N., Luo X. & Fang Z. et al., “When and how Artificial Intelligence augments employee creativity,” Academy of Management Journal, Vol. 67, No. 1 (2024), https://doi.org/10.5465/amj.2022.0426. 8 Yin M., Jiang S. & Niu X., “Can AI really help? the double-edged sword effect of AI assistant on employees’ innovation behavior,” Computers in Human Behavior, Vol. 150 (2024), https://doi.org/10.1016/j.chb.2023.107987. 9 Criscuolo P., Salter A. & Ter Wal A. L. J., “Going underground: bootlegging and individual innovative performance,” Organization Science, Vol. 25, No. 5 (2014), pp. 1287-1305. 10 Ng T. W. H. & Feldman D. C., “The impact of job embeddedness on innovation-related behaviors,” Human Resource Management, Vol. 49, No. 6 (2010), pp. 1067-1087. 11 Ampofo E. T., Coetzer A. & Poisat P., “Relationships between job embeddedness and employees’ life satisfaction,” Employee Relations, Vol. 39, No. 7 (2017), pp. 951-966. 12 Hackman J. R. & Oldham G. R., “Motivation through the design of work: test of a theory,” Organizational Behavior and Human Performance, Vol. 16, No. 2 (1976), pp. 250-279. 13 Spreitzer G. M., “Psychological, empowerment in the workplace: dimensions, measurement and validation,” Academy of Management Journal, Vol. 38, No. 5 (1995), pp. 1442-1465. 14 Ergeneli A., Ar? G. S. & Metin S., “Psychological empowerment and its relationship to trust in immediate managers,” Journal of Business Research, Vol. 60, No. 1 (2007), pp. 41-49. 15 Yoon D. Y., Han C. S. H. & Lee S. K. et al., “The critical role of job embeddedness: the impact of psychological empowerment and learning orientation on organizational commitment,” Frontiers in Psychology, Vol. 13 (2022), https://doi.org/10.3389/fpsyg.2022.1014186. 16 黄玮、项国鹏、杜运周等:《越轨创新与个体创新绩效的关系研究——地位和创造力的联合调节作用》,《南开管理评论》2017年第1期,第143-154页。 17 江依:《员工越轨创新行为研究综述及其展望》,《科技管理研究》2018年第10期,第131-139页。 18 占小军、李志成、郭一蓉:《高创造力员工高伤害?道德许可视角创造力与职场不文明行为关系研究》,《南开管理评论》2020年第23期,第190-199页。 19 Nanyangwe C. N., Wang H. & Cui Z., “Work and innovations: the impact of self-identification on employee bootlegging behaviour,” Creativity and Innovation Management, Vol. 30, No. 4 (2021), pp. 713-725. 20 Globocnik D., H?ufler B. P. & Salomo S., “Organizational antecedents to bootlegging and consequences for the newness of the innovation portfolio,” Journal of Product Innovation Management, Vol. 39, No. 5 (2022), pp. 717-745. 21 Qu J., Khapova S. N. & Xu S. et al., “Does leader humility foster employee bootlegging? examining the mediating role of relational energy and the moderating role of work unit structure,” Journal of Business and Psychology, Vol. 38, No. 6 (2023), pp. 1287-1305. 22 Masoudnia Y. & Szwejczewski M., “Bootlegging in the R&D departments of high-technology firms,” Research Technology Management, Vol. 55, No. 5 (2012), pp. 35-42. 23 张恒、高中华、李慧玲:《增益还是损耗:人工智能技术应用对员工创新行为的“双刃剑”效应》,《科技进步与对策》2023年第18期,第1-11页。 24 Raisch S. & Krakowski S., “Artificial intelligence and management: the automation augmentation paradox,” Academy of Management Review, Vol. 46, No. 1 (2021), pp. 192-210. 25 Tschang F. T. & Almirall E., “Artificial intelligence as augmenting automation: implications for employment,” Academy of Management Perspectives, Vol. 35, No. 4 (2021), pp. 642-659. 26 Furman J. L. & Teodoridis F., “Automation, research technology, and researchers’ trajectories: evidence from computer science and electrical engineering,” Organization Science, Vol. 31, No. 2 (2020), pp. 330-354. 27 Spring M., Faulconbridge J. & Sarwar A., “How information technology automates and augments processes: insights from Artificial-Intelligence-based systems in professional service operations,” Journal of Operations Management, Vol. 68, Nos. 6-7 (2022), pp. 592-618. 28 王振源、姚明辉:《工作场所人机协作对员工影响的研究述评》,《外国经济与管理》2022年第9期,第86-102页。 29 李超平、李晓轩、时勘等:《授权的测量及其与员工工作态度的关系》,2006年第1期,第99-106页。 30 杨春江、蔡迎春、侯红旭:《心理授权与工作嵌入视角下的变革型领导对下属组织公民行为的影响研究》,《管理学报》2015年第2期,第231-239页。 31 徐细雄、淦未宇:《组织支持契合、心理授权与雇员组织承诺:一个新生代农民工雇佣关系管理的理论框架——基于海底捞的案例研究》,《管理世界》2011年第12期,第131-147页。 32 Fan X., Zhao S. & Zhang X. et al., “The impact of improving employee psychological empowerment and job performance based on deep learning and Artificial Intelligence,” Journal of Organizational and End User Computing, Vol. 35, No. 3 (2023), pp. 375-392. 33 May D. R., Gilson R. L. & Harter L. M., “The psychological conditions of meaningfulness, safety and availability and the engagement of the human spirit at work,” Journal of Occupational and Organizational Psychology, Vol. 77, No. 1 (2004), pp. 11-37. 34 Stander M. W. & Rothmann S., “Psychological empowerment, job insecurity and employee engagement,” SA Journal of Industrial Psychology, Vol. 36, No. 1 (2010), https://doi.org/10.4102/sajip.v36i1.849. 35 Shuck B. & Reio T. G., “Employee engagement and well-being,” Journal of Leadership & Organizational Studies, Vol. 21, No. 1 (2014), pp. 43-58. 36 朱晓妹、王森、何勤:《人工智能嵌入视域下岗位技能要求对员工工作旺盛感的影响研究》,《外国经济与管理》2021年第11期,第15-25页。 37 高山行、刘嘉慧:《人工智能对企业管理理论的冲击及应对》,《科学学研究》2018年第11期,第2004-2010页。 38 Zhou H. & Chen J., “How does psychological empowerment prevent emotional exhaustion? psychological safety and organizational embeddedness as mediators,” Frontiers in Psychology, Vol. 12 (2021), https://doi.org/10.3389/fpsyg.2021.546687. 39 马苓、刘硕、赵曙明等:《多因素联动效应对知识型员工主动变革行为的驱动机制研究——基于AMO理论的定性比较分析》,《管理评论》2023年第6期,第205-216页。 40 Lin L., “Crafting for the changing workplace: a dual pathway model of job crafting and leisure crafting based on self-identity theory,” Advances in Psychological Science, Vol. 29, No. 5 (2021), pp. 773-786. 41 Hu S. & Wang Y., “Concept, measurements, antecedents and consequences of work engagement,” Advances in Psychological Science, Vol. 22, No. 12 (2014), pp. 1975-1984. 42 胡少楠、王詠:《工作投入的概念、测量、前因与后效》,《心理科学进展》2014第12期,第1975-1984页。 43 李正卫、戴丽华、王飞绒等:《领导积极幽默如何影响员工创造力:来自浙江IT企业的实证研究》,《浙江大学学报(人文社会科学版)》2023年第5期,第183-196页。 44 刘甲楠、邢春冰:《人工智能、劳动力需求与人力资本投资》,《人口研究》2024年第1期,第68-84页。 45 闫培林:《工作重塑对工作投入的影响:人—工作匹配与工作意义的作用》,《中国人力资源开发》2016年第19期,第6-13页。 46 de Clercq D., Haq I. U. & Azeem M. U., “Why happy employees help,” Personnel Review, Vol. 48, No. 4 (2019), pp. 1001-1021. 47 朱永跃、过旻钰、陈雯:《传统与现代交融视角下制造业员工工匠精神量表开发及应用》,《科技进步与对策》2021年第9期,第124-133页。 48 马君、张昊民、杨涛:《成就目标导向、团队绩效控制对员工创造力的跨层次影响》,《心理学报》2015年第1期,第79-92页。 49 Meng F., Xu Y. & Liu Y. et al., “Linkages between transformational leadership, work meaningfulness and work engagement: a multilevel cross-sectional study,” Psychology Research and Behavior Management, Vol. 15 (2022), pp. 367-380. 50 吴信东、董丙冰、堵新政等:《数据治理技术》,《软件学报》2019年第9期,第2830-2856页。 51 王甜、陈春花、宋一晓:《挑战性压力源对员工创新行为的“双刃”效应研究》,《南开管理评论》2019年第5期,第99-100页。 52 屠兴勇、王沂、刘雷洁等:《反身性在工作自主性与创造性问题解决间的中介作用:创造力自我期望的调节效应》,《管理评论》2023年第6期,第182-192页。 53 Xiang S., Zhao K. & Ning N., “The double-edged sword effect of leadership empowerment behavior,” Advances in Psychological Science, Vol. 28, No. 11 (2020), pp. 1814-1835. 54 de Cremer D. & Kasparov G., “AI should augment human intelligence, not replace it,” Harvard Business Review, No. 1 (2021), pp. 181-190. 55 张云超、屠兴勇:《知识型员工越轨创新行为触发机制研究》,《科技进步与对策》2022年第8期,第131-141页。 56 Ouweneel E., Schaufeli W. B. & Le Blanc P. M., “Believe, and you will achieve: changes over time in self-efficacy, engagement, and performance,” Applied Psychology: Health and Well-Being, Vol. 5, No. 2 (2013), pp. 225-247. 57 刘善仕、裴嘉良、钟楚燕:《平台工作自主吗?在线劳动平台算法管理对工作自主性的影响》,《外国经济与管理》2021年第2期,第51-67页。 58 朱丽、刘超、陈春花:《数字时代的协同共生框架:系统效率与价值进化》,《管理学报》2023年第6期,第789-799页。 59 程德俊、龙静、赵曙明:《高参与工作系统和组织创新绩效:社会资本的中介作用》,《经济理论与经济管理》2011年第9期,第66-76页。 60 杨征、叶龙、郭名:《职场地位对员工创造力的影响机制研究》,《北京交通大学学报(社会科学版)》2019年第4期,第93-100页。 61 刘贝妮、赵海珠、卢强等:《制度视域下联合办公空间紧张状态的演化与平衡研究述评》,《管理学报》2020年第12期,第1881-1891页。 62 Leyer M. & Schneider S., “Decision augmentation and automation with Artificial Intelligence: threat or opportunity for managers?” Business Horizons, Vol. 64, No. 5 (2021), pp. 711-724. 63 Guo M., Gu M. & Huo B., “The impacts of automation and augmentation AI use on physicians’ performance: an ambidextrous perspective,” International Journal of Operations & Production Management, Vol. 45, No. 1 (2024), pp. 114-151. 64 Spreitzer G. M., “An empirical test of a comprehensive model of intrapersonal empowerment in the workplace,” American Journal of Community Psychology, Vol. 23, No. 5 (1995), pp. 601-629. 65 Podsakoff P. M., MacKenzie S. B. & Lee J. Y. et al., “Common method biases in behavioral research: a critical review of the literature and recommended remedies,” Journal of Applied Psychology, Vol. 88, No. 5 (2003), pp. 879-903. 66 Hayes A. F., Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition: A Regression-based Approach, New York: Guilford Publications, 2017. 67 党红艳、李云鹏:《数字技术创新背景下的员工转型:整合框架与研究展望》,《科技进步与对策》2023年第23期,第149-160页。 68 涂婷婷、赵琛徽:《远程办公对员工越轨创新行为的影响研究——角色宽度自我效能和工作重塑的链式中介模型》,《财经论丛》2023年第6期,第93-102页。 69 吴晓波、张伟齐、李思涵等:《基于技术接受模型(TAM)的智能投资顾问用户采纳意愿链式影响机制研究》,《浙江大学学报(人文社会科学版)》2023年第7期,第5-19页。