文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (5): 545-548  DOI:10.3785/j.issn.1008-9497.2018.05.005
0

引用本文 [复制中英文]

岳田, 宋晓秋. 线性斜积半流的一致指数稳定性的若干刻画[J]. 浙江大学学报(理学版), 2018, 45(5): 545-548. DOI: 10.3785/j.issn.1008-9497.2018.05.005.
[复制中文]
YUE Tian, SONG Xiaoqiu. Some characterizations for the uniform exponential stability of linear skew-product semiflows[J]. Journal of Zhejiang University(Science Edition), 2018, 45(5): 545-548. DOI: 10.3785/j.issn.1008-9497.2018.05.005.
[复制英文]

基金项目

湖北省教育厅科学技术研究项目(B2018067)

作者简介

岳田(1988-), ORCID:http://orcid.org/0000-0002-3371-5673, 男, 硕士, 讲师, 主要从事微分系统的渐近行为研究, E-mail:yuetian@cumt.edu.cn

文章历史

收稿日期:2017-05-08
线性斜积半流的一致指数稳定性的若干刻画
岳田1 , 宋晓秋2     
1. 湖北汽车工业学院 理学院, 湖北 十堰 442002;
2. 中国矿业大学 数学学院, 江苏 徐州 221116
摘要: 基于线性斜积半流的定义,引入了Banach空间中该类动力系统一致指数稳定的概念.借助稳定性理论中的Datko型方法,讨论了斜积半流一致指数稳定的特征,建立了其一致指数稳定的若干充要条件.所得结论推广了指数稳定性及指数不稳定性中一些已有的经典结论(如DATKO、ROLEWICZ、MEGAN、BUSE等).
关键词: 线性斜积半流    一致指数稳定性    巴拿赫空间    
Some characterizations for the uniform exponential stability of linear skew-product semiflows
YUE Tian1, SONG Xiaoqiu2     
1. School of Science, Hubei University of Automotive Technology, Shiyan 442002, Hubei Province, China;
2. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China
Abstract: Based on the definition of linear skew-product semiflows, a uniform exponential stability concept of dynamical systems is presented in Banach spaces. The main purpose of this paper is to give several characterizations for the uniform exponential stability of linear skew-product semiflows by means of Datko's approach in stability theory. Some necessary and sufficient conditions concerning the uniform exponential stability of linear skew-product semiflows are given. The obtained conclusions are generalizations of the well-known results about the exponential stability and exponential instability.
Key words: linear skew-product semiflow    uniform exponential stability    Banach space    

近年来, 关于有限或无限维Banach空间中演化方程解的渐近行为研究取得了突破性进展, 尤其在指数稳定性理论方面, 取得了丰富的研究成果[1-14].由于在物理学、工程学、经济学中很难找到准确的数学模型去刻画动力系统, 而其演化过程的解可以形成一个线性斜积半流, 故可借助线性斜积半流来讨论该类发展方程的指数渐近行为.关于线性斜积半流的指数稳定性, MEGAN等利用容许性方法、Datko方法和构造函数空间上的泛函方法对其进行了相关讨论[3-7]; 文献[10-14]对斜演化半流的指数稳定性进行了探讨, 从而推广了线性斜积半流的概念.本文将在上述文献的基础上, 对Banach空间中线性斜积半流的一致指数稳定性给出Datko、Rolewicz型刻画及遍历刻画.

第1节给出后文需要的概念; 第2节讨论线性斜积半流的一致指数稳定性, 并给出了若干一致指数稳定的充分或必要条件, 所得结果推广了稳定性理论中的一些经典结论.

1 预备知识

X是一个Banach空间, (Θ, d)为一个度量空间, 将空间X上的范数及其作用于有界线性算子全体B(X)上的范数记作‖·‖, I为恒等算子.

定义1[5]  如果满足性质:

(ⅰ) σ(θ, 0)=θ,  ∀θΘ;

(ⅱ) σ(θ, t+s)=σ(σ(θ, s), t),   ∀(θ, s, t)∈Θ×R+2.

则称连续映射σ: Θ×R+ΘΘ上的半流.

定义2[5]  如果σΘ上的半流且Φ: Θ×R+B(X)满足以下条件:

(ⅰ) Φ(θ, 0)=I, ∀θΘ;

(ⅱ) Φ(θ, t+s)=Φ(σ(θ, t), s)Φ(θ, t), ∀(θ, s, t)∈Θ×R+2;

(ⅲ)存在M≥1和ω>0使得

$ \left\| {\mathit{\Phi }\left( {\theta ,t} \right)} \right\| \le M{{\rm{e}}^{\omega t}},\forall \left( {\theta ,t} \right) \in \mathit{\Theta } \times {{\bf{R}}_ + }; $

(ⅳ)对所有的(θ, x)∈Θ×X, 映射R+tΦ(θ, t)xX连续,

则称π=(Φ, σ)为X×Θ上的线性斜积半流.

例1  设σ为度量空间Θ上的半流, X是一个Banach空间, A: ΘB(X)为连续映射.若Φ(θ, t)x为抽象Cauchy问题:

$ \left\{ \begin{array}{l} u'\left( t \right) = A\left( {\sigma \left( {\theta ,t} \right)} \right)u\left( t \right),\;\;\;\;t \ge 0,\\ u\left( 0 \right) = x \end{array} \right. $

的解, 则π=(Φ, σ)为X×Θ上的线性斜积半流.

定义3  如果存在常数N>0和v>0, 使得对∀(t, θ, x)∈R+×Θ×X, 有

$ \left\| {\mathit{\Phi }\left( {\theta ,t} \right)x} \right\| \le N{{\rm{e}}^{ - vt}}\left\| x \right\|, $ (1)

则称线性斜积半流π=(Φ, σ)为一致指数稳定的.

2 主要结论及其证明

定理1  线性斜积半流π=(Φ, σ)是一致指数稳定的当且仅当存在h>0和c∈(0, 1), 使得对每个θΘ和每个xX存在τ∈(0, h], 满足

$ \left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\| \le c\left\| x \right\|. $ (2)

证明  必要性显然.下证充分性.

设任一固定的θΘ, xX.由假设知, 存在τ1∈(0, h], 使得式(2)成立.对θ1=σ(θ, τ1)和x1=Φ(θ, τ1)x可选择τ2∈(0, h], 使得

$ \left\| {\mathit{\Phi }\left( {{\theta _1},{\tau _2}} \right){x_1}} \right\| \le c\left\| {{x_1}} \right\| \le {c^2}\left\| x \right\|, $

由于

$ \begin{array}{l} \mathit{\Phi }\left( {{\theta _1},{\tau _2}} \right){x_1} = \mathit{\Phi }\left( {\sigma \left( {\theta ,{\tau _1}} \right),{\tau _2}} \right)\mathit{\Phi }\left( {\theta ,{\tau _1}} \right)x = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {\theta ,{\tau _1} + {\tau _2}} \right)x, \end{array} $

不妨记τ0=0, sn=$\sum\limits_{i = 0}^n {{\tau _i}} $,   0<τi∈{1, 2, …, n}h, 由数学归纳法得

$ \left\| {\mathit{\Phi }\left( {\theta ,{s_n}} \right)x} \right\| \le {c^n}\left\| x \right\|,\;\;\;\;n \in {\bf{N}}. $ (3)

sn→∞(n→∞), 则对每个t∈[sn, sn+1], 有t≤(n+1)h.从而

$ \begin{array}{l} \left\| {\mathit{\Phi }\left( {\theta ,t} \right)x} \right\| = \left\| {\mathit{\Phi }\left( {\sigma \left( {\theta ,{s_n}} \right),t - {s_n}} \right)\mathit{\Phi }\left( {\theta ,{s_n}} \right)x} \right\| \le \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;M{{\rm{e}}^{\omega h}}{c^n}\left\| x \right\| \le M{{\rm{e}}^{\left( {\omega + v} \right)h}}{{\rm{e}}^{ - vt}}\left\| x \right\|, \end{array} $

其中v=$ - \frac{{\ln \;c}}{h}$>0.

如果sns(n→∞), 利用式(3)可得Φ(θ, s)x=0.当ts时,

$ \mathit{\Phi }\left( {\theta ,t} \right)x = \mathit{\Phi }\left( {\sigma \left( {\theta ,s} \right),t - s} \right)\mathit{\Phi }\left( {\theta ,s} \right)x = 0, $

当0≤ts时, 类似于sn→∞的情况.

综上可知, 对∀(t, θ, x)∈R+×Θ×X, 式(1)成立.

证毕!

定理2  如果φ, ψ: [0, ∞)→[0, ∞)是2个非减的函数, 满足$\mathop {\lim }\limits_{t \to \infty } \varphi \left( t \right) = \mathop {\lim }\limits_{t \to \infty } \psi \left( t \right) = \infty $, 且对所有(θ, x)∈Θ×X, 有

$ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\int_0^t {\varphi \left( {\psi \left( \tau \right)\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|} \right){\rm{d}}\tau } < \infty , $ (4)

则线性斜积半流π=(Φ, σ)是一致指数稳定的.

证明  结合已知条件, 利用反证法推出式(2)成立.如果式(2)不成立, 则对每个h>0及每个c∈(0, 1)存在x0X, ‖x0‖=1及θ0Θ, 使得

$ \left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\| > c\left\| {{x_0}} \right\| = c $

对所有τ∈(0, h]成立.从而由式(4)可得, 对所有h>0, 有

$ \begin{array}{l} M = \mathop {\sup }\limits_{t > 0} \frac{1}{t}\int_0^t {\varphi \left( {\psi \left( \tau \right)\left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\|} \right){\rm{d}}\tau } \ge \\ \;\;\;\;\;\;\;\mathop {\sup }\limits_{t \in \left( {0,h} \right]} \frac{1}{t}\int_0^t {\varphi \left( {c\psi \left( \tau \right)} \right){\rm{d}}\tau } \ge \\ \;\;\;\;\;\;\;\frac{1}{h}\int_0^h {\varphi \left( {c\psi \left( \tau \right)} \right){\rm{d}}\tau } , \end{array} $

因此, 由L'Hospital法则, 有

$ M \ge \mathop {\lim }\limits_{t \to \infty } \frac{1}{t}\int_0^t {\varphi \left( {c\psi \left( \tau \right)} \right){\rm{d}}\tau } = \mathop {\lim }\limits_{t \to \infty } \varphi \left( {c\psi \left( t \right)} \right) = \infty , $

此矛盾说明式(2)成立.从而π=(Φ, σ)是一致指数稳定的.

证毕!

推论1  若φ(t)满足定理2的条件, 则线性斜积半流π=(Φ, σ)是一致指数稳定的当且仅当存在2个常数α>0和β>0使得对所有的(θ, x)∈Θ×X

$ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\int_0^t {\varphi \left( {{{\rm{e}}^{\alpha \tau }}\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|} \right){\rm{d}}\tau } \le \varphi \left( {\beta \left\| x \right\|} \right). $ (5)

证明  必要性.设存在常数N>0, v>0, 使得‖Φ(θ, t)‖≤Ne-v t对所有t≥0和θΘ成立, 任意固定的α∈(0, v]及βN, 对每个θΘ和每个xX, 当t>0时, 有

$ \begin{array}{l} \varphi \left( {\beta \left\| x \right\|} \right) = \frac{1}{t}\int_0^t {\varphi \left( {\beta \left\| x \right\|} \right){\rm{d}}\tau } \ge \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\frac{1}{t}\int_0^t {\varphi \left( {{{\rm{e}}^{\alpha \tau }}\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|} \right){\rm{d}}\tau } . \end{array} $

由定理2可知充分性显然.

证毕!

推论2  如果φ(t)满足定理2的条件, 且存在3个常数α>0, β>0, γ>0, 使得对所有的(θ, x)∈Θ×X, 有

$ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\sum\limits_{n = 0}^{\left[ {t + 1} \right]} {\varphi \left( {\gamma {{\rm{e}}^{\alpha n}}\left\| {\mathit{\Phi }\left( {\theta ,n} \right)x} \right\|} \right)} \le \varphi \left( {\beta \left\| x \right\|} \right), $ (6)

则线性斜积半流π=(Φ, σ)是一致指数稳定的.

证明  利用式(6), 当t>0时有

$ \begin{array}{l} \mathop {\sup }\limits_{t > 0} \frac{1}{t}\int_0^t {\varphi \left( {{{\rm{e}}^{\alpha \tau }}\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|} \right){\rm{d}}\tau } \le \\ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\sum\limits_{n = 0}^{\left[ {t + 1} \right]} {\int_n^{n + 1} {\varphi \left( {{{\rm{e}}^{\alpha \tau }}\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|} \right){\rm{d}}\tau } } \le \\ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\sum\limits_{n = 0}^{\left[ {t + 1} \right]} {\int_n^{n + 1} {\varphi \left( {{{\rm{e}}^{\alpha \left( {n + 1} \right)}} \times } \right.} } \\ \;\;\;\;\;\;\left. {\left\| {\mathit{\Phi }\left( {\sigma \left( {\theta ,n} \right),\tau - n} \right)\mathit{\Phi }\left( {\theta ,n} \right)x} \right\|} \right){\rm{d}}\tau \le \\ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\sum\limits_{n = 0}^{\left[ {t + 1} \right]} {\int_n^{n + 1} {\varphi \left( {M{{\rm{e}}^{\omega + \alpha \left( {n + 1} \right)}}\left\| {\mathit{\Phi }\left( {\theta ,n} \right)x} \right\|} \right){\rm{d}}\tau } } = \\ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\sum\limits_{n = 0}^{\left[ {t + 1} \right]} {\varphi \left( {M{{\rm{e}}^{\omega + \alpha \left( {n + 1} \right)}}\left\| {\mathit{\Phi }\left( {\theta ,n} \right)x} \right\|} \right)} = \\ \mathop {\sup }\limits_{t > 0} \frac{1}{t}\sum\limits_{n = 0}^{\left[ {t + 1} \right]} {\varphi \left( {\gamma {{\rm{e}}^{\alpha n}}\left\| {\mathit{\Phi }\left( {\theta ,n} \right)x} \right\|} \right)} \le \\ \varphi \left( {\beta \left\| x \right\|} \right), \end{array} $

其中γ=Meω+α, M, ω由定义2给出.进而由推论1可知结论成立.

证毕!

定理3  线性斜积半流π=(Φ, σ)是一致指数稳定的当且仅当存在非减函数f(t)>0(t>0)满足f(ts)≤f(t)f(s) (t, s≥0)及K>0, 使得对所有xXθΘ, 有

$ \int_0^\infty {f\left( {\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|} \right){\rm{d}}\tau } \le Kf\left( {\left\| x \right\|} \right). $ (7)

证明  必要性.若π=(Φ, σ)是一致指数稳定的, 则存在常数N>0, v>0, 使得对所有xXθΘ, 有

$ \int_0^\infty {\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|{\rm{d}}\tau } \le N\int_0^\infty {{{\rm{e}}^{ - v\tau }}\left\| x \right\|{\rm{d}}\tau } = \frac{N}{v}\left\| x \right\|. $

因此, 当f(t)=t, K=N/v时, 式(7)成立.

充分性.如果π=(Φ, σ)非一致指数稳定, 则对每个h>0及每个c∈(0, 1), 存在x0Xθ0Θ, 使得对所有τ∈(0, h], 有

$ \left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\| > c\left\| {{x_0}} \right\|, $ (8)

特别地, 取h=Kf(3)及c=1/3, 由式(8)有

$ \begin{array}{l} f\left( 3 \right)\int_0^\infty {f\left( {\left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\|} \right){\rm{d}}\tau } \ge \\ \int_0^\infty {f\left( {3\left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\|} \right){\rm{d}}\tau } \ge \\ \int_0^h {f\left( {\left\| {{x_0}} \right\|} \right){\rm{d}}\tau } = Kf\left( 3 \right)f\left( {\left\| {{x_0}} \right\|} \right). \end{array} $

与式(7)矛盾.因此, π=(Φ, σ)是一致指数稳定的.

证毕!

定理4  线性斜积半流π=(Φ, σ)是一致指数稳定的当且仅当存在非减函数f(t)>0(t>0), 满足f(ts)≥f(t)f(s) (t, s≥0)及K>0, 使得对所有xXθΘ, 式(7)成立.

证明  必要性.令f(t)=t即可证得必要性.

充分性.类似定理3.由式(8), 对c∈(0, 1)和h=K/f(c), 有

$ \begin{array}{*{20}{c}} {\int_0^\infty {f\left( {\left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\|} \right){\rm{d}}\tau } \ge \int_0^h {f\left( {c\left\| {{x_0}} \right\|} \right){\rm{d}}\tau } \ge }\\ {hf\left( c \right)f\left( {\left\| {{x_0}} \right\|} \right) = Kf\left( {\left\| {{x_0}} \right\|} \right).} \end{array} $

与式(7)矛盾.因此, π=(Φ, σ)是一致指数稳定的.

证毕!

推论3  线性斜积半流π=(Φ, σ)是一致指数稳定的当且仅当存在p>0及K>0对所有xXθΘ, 有

$ {\left( {\int_0^\infty {{{\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|}^p}{\rm{d}}\tau } } \right)^{\frac{1}{p}}} \le K\left\| x \right\|. $ (9)

推论4  若f(t)满足定理3或定理4的条件, 则线性斜积半流π=(Φ, σ)是一致指数稳定的充要条件为存在K>0对所有xXθΘ, 有

$ \sum\limits_{n = 0}^\infty {f\left( {\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|} \right)} \le Kf\left( {\left\| x \right\|} \right). $ (10)

定理5  线性斜积半流π=(Φ, σ)是一致指数稳定的当且仅当存在K>0, λ>0对所有t>0及∀(θ, x)∈Θ×X, 有

$ \frac{1}{t}\int_0^t {{{\rm{e}}^{\lambda \tau }}\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|{\rm{d}}\tau } \le K\left\| x \right\|. $ (11)

证明  必要性.如果π=(Φ, σ)是一致指数稳定的, 则由定义, 存在N>0, v>0, 使得对∀(θ, x)∈Θ×X, 有

$ \begin{array}{l} \frac{1}{t}\int_0^t {{{\rm{e}}^{\frac{v}{2}\tau }}\left\| {\mathit{\Phi }\left( {\theta ,\tau } \right)x} \right\|{\rm{d}}\tau } \le \\ \;\;\;\;\;\frac{N}{t}\int_0^t {{{\rm{e}}^{ - \frac{{v\tau }}{2}}}\left\| x \right\|{\rm{d}}\tau } = \frac{{2N}}{{vt}}\left( {1 - {{\rm{e}}^{ - \frac{{vt}}{2}}}} \right)\left\| x \right\|, \end{array} $

λ=v/2, K=$N\;\mathop {\sup }\limits_{\mu > 0} \;\frac{{1 - {{\rm e}^{ - \mu }}}}{\mu }$<∞, 可得式(11)成立.

充分性.类似定理3的证明.如果π=(Φ, σ)不是一致指数稳定的, 设h>0满足eλh>1+3λhK, 其中K, λ由式(11)给出, 由定理1知, 当c=1/3时存在x0Xθ0Θ对所有τ∈(0, h], 有式(8)成立.从而当t=h时, 有

$ \begin{array}{l} \frac{1}{t}\int_0^t {{{\rm{e}}^{\lambda \tau }}\left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\|{\rm{d}}\tau } = \\ \;\;\;\;\;\;\frac{1}{h}\int_0^h {{{\rm{e}}^{\lambda \tau }}\left\| {\mathit{\Phi }\left( {{\theta _0},\tau } \right){x_0}} \right\|{\rm{d}}\tau } > \\ \;\;\;\;\;\;\frac{1}{h}\int_0^h {{{\rm{e}}^{\lambda \tau }}\frac{1}{3}\left\| {{x_0}} \right\|{\rm{d}}\tau } = \\ \;\;\;\;\;\;\frac{{{{\rm{e}}^{\lambda h}} - 1}}{{3h\lambda }}\left\| {{x_0}} \right\| > K\left\| {{x_0}} \right\|. \end{array} $

与式(11)矛盾, 因此π=(Φ, σ)是一致指数稳定的.

证毕!

参考文献
[1] DATKO R. Uniform asymptotic stability of evolutionary processes in a Banach space[J]. SIAM J Math Anal, 1973, 3(3): 428–445.
[2] ROLEWICZ S. On uniform N-equistability[J]. J Math Anal Appl, 1986, 115(2): 434–441. DOI:10.1016/0022-247X(86)90006-5
[3] MEGAN M, SASU A L, SASU B. Perron conditions for uniform exponential expansiveness of linear skew-product flows[J]. Monatsh Math, 2003, 138(2): 145–157. DOI:10.1007/s00605-002-0520-1
[4] MEGAN M, SASU A L, SASU B. Exponential stability and exponential instability for linear skew-product flows[J]. Math Bohem, 2004, 129(3): 225–243.
[5] MEGAN M, SASU A L, SASU B. Exponential instability of linear skew-product semiflows in terms of Banach function spaces[J]. Results Math, 2004, 45(3): 309–318.
[6] MEGAN M, BULIGA L. Functionals on normed function spaces and exponential instability of linear skew-product semiflows[J]. Bull Belg Math Soc Simon Stevin, 2007, 14(2): 355–362.
[7] PREDA C, PREDA P, BǍTǍRAN F. An extension of a theorem of R. Datko to the case of (non)uniform exponential stability of linear skew-product semiflows[J]. J Math Anal Appl, 2015, 425(2): 1148–1154. DOI:10.1016/j.jmaa.2015.01.014
[8] BUSE C, NICULESCU C P. An ergodic characterization of uniformly exponentially stable evolution families[J]. Bull Math Soc Sci Math Moumanie, 2009, 52(1): 33–40.
[9] LUPA N, MEGAN M, POPA I L. On weak exponential stability of evolution operators in Banach spaces[J]. Nolinear Anal, 2010, 73(8): 2445–2450. DOI:10.1016/j.na.2010.06.017
[10] STOICA C, MEGAN M. On uniform exponential stability for skew-evolution semiflows on Banach spaces[J]. Nolinear Anal, 2010, 72(3/4): 1305–1313.
[11] HAI P V. Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows[J]. Nolinear Anal, 2010, 72(12): 4390–4396. DOI:10.1016/j.na.2010.01.046
[12] YUE T, SONG X Q, LI D Q. On weak exponential expansiveness of skew-evolution semiflows in Banach spaces[J]. J Inequal Appl, 2014, 2014: 165. DOI:10.1186/1029-242X-2014-165
[13] 岳田, 雷国梁, 宋晓秋. 线性斜演化半流一致指数膨胀性的若干刻画[J]. 数学进展, 2016, 45(3): 433–442.
YUE T, LEI G L, SONG X Q. Some characterizations for the uniform exponential expansiveness of linear skew-evolution semiflows[J]. Advances in Mathematics, 2016, 45(3): 433–442.
[14] 岳田, 宋晓秋. 巴拿赫空间上斜演化半流的非一致指数不稳定性的存在条件[J]. 浙江大学学报(理学版), 2016, 43(2): 181–183.
YUE T, SONG X Q. Criteria for the existence of nonuniform exponential instability of skew-evolution semiflows in Banach spaces[J]. Journal of Zhejiang University (Science Edition), 2016, 43(2): 181–183.