文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (3): 304-307  DOI:10.3785/j.issn.1008-9497.2018.03.006
0

引用本文 [复制中英文]

孟令胜. 酉不变范数下{1, 3}-和{1, 4}-逆的扰动界[J]. 浙江大学学报(理学版), 2018, 45(3): 304-307. DOI: 10.3785/j.issn.1008-9497.2018.03.006.
[复制中文]
MENG Lingsheng. Perturbation bounds of {1, 3}-and {1, 4}-inverses under the unitarily invariant norm[J]. Journal of Zhejiang University(Science Edition), 2018, 45(3): 304-307. DOI: 10.3785/j.issn.1008-9497.2018.03.006.
[复制英文]

基金项目

国家自然科学基金资助项目(11701458);西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-16-15)

作者简介

孟令胜(1984-), ORCID:http://orcid.org/0000-0003-0876-9730, 男, 博士, 讲师, 主要从事矩阵理论研究, E-mail:menglsh@nwnu.edu.cn

文章历史

收稿日期:2017-01-13
酉不变范数下{1, 3}-和{1, 4}-逆的扰动界
孟令胜     
西北师范大学 数学与统计学院, 甘肃 兰州 730070
摘要: MENG等给出了{1,3}-和{1,4}-逆在谱范数和Frobenius范数下的加法和乘法扰动界,本文研究了{1,3}-和{1,4}-逆在一般的酉不变范数下的加法和乘法扰动界,所得结果推广和改进了已有文献中的相关结果.
关键词: 酉不变范数    扰动界    广义逆    奇异值分解    
Perturbation bounds of {1, 3}-and {1, 4}-inverses under the unitarily invariant norm
MENG Lingsheng     
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract: The additive and multiplicative perturbation bounds of the {1, 3}-and {1, 4}-inverses under the spectral norm and Frobenius norm were derived by MENG et al. In this paper, the additive and multiplicative perturbation bounds of the {1, 3}-and {1, 4}-inverses under the general unitarily invariant norm are studied. The results extend and improve the corresponding results in the above paper.
Key words: unitarily invariant norm    perturbation bound    generalized inverse    singular value decomposition    
0 引言

文中符号说明:I表示适当阶数的单位矩阵;ACrm×n表示秩为rm×n阶复矩阵;A*A+分别表示矩阵A的共轭转置和Moore-Penrose逆;‖·‖2和‖·‖分别表示矩阵的谱范数和酉不变范数.

广义逆理论是一个应用十分广泛的数学分支,在数值线性代数、线性规划、最优化、控制论、马尔可夫链、数理统计、信号传输、微分方程等重要领域都有极其广泛的应用. 1955年PENROSE在MOORE关于广义逆的基础上提出了4个更加便于理解的方程[1]

ACm×n,若存在GCn×m使得

(1) AGA=A;                 (2) GAG=G;

(3) (AG)*=AG;                  (4) (GA)*=GA,

则称GA的Moore-Penrose逆,这4个方程称为M-P方程.

全部或部分满足M-P方程的矩阵G,称为A的广义逆.若G满足M-P方程中的第(i), …, (j)个方程,则称G为矩阵A的一个{i, …, j}-逆,记为A{i, …, j}. A的所有{i, …, j}-逆的集合用A{i, …, j}表示,其中A{1}, A{1, 2}, A{1, 3}A{1, 4}都是常用的广义逆,并且一般都不是唯一存在的.

广义逆的扰动研究是广义逆理论中一个非常重要的课题,WEDIN[2]、STEWART[3]、孙继广[4]和WEI等[5]等国内外专家都在此研究领域做出了重要贡献.迄今为止,广义逆扰动理论的研究成果已有很多.关于Moore-Penrose逆和Drazin逆的扰动理论可参阅文献[1-12].

鉴于{1}-逆在矩阵理论和计算中的重要作用(例如相容线性系统Ax=b的通解可以表示为x=A(1)b+(I-A(1)A)y),LIU等[12]研究了{1}-逆在保秩扰动下的连续性;WEI等[13]和MENG等[14]分别给出了{1}-逆在谱范数和Frobenius范数下的加法和乘法扰动界.另外,因为{1, 3}-和{1, 4}-逆在实际应用中也起着非常重要的作用,例如最小二乘问题min‖Ax-b2的最小二乘解可表示为x=A(1, 3)b;相容线性系统Ax=b的最小范数解可表示为x=A(1, 4)b[1],所以MENG等[14]研究了这两类广义逆在谱范数和Frobenius范数下的加法和乘法扰动界.

因谱范数和Frobenius范数是两类特殊的酉不变范数,因此,本文试图将文献[14]中的关于{1, 3}-和{1, 4}-逆在谱范数和Frobenius范数下的结果推广到一般的酉不变范数.对于给定的矩阵A, BCm×nA(1, i)A{1, i}, i=3, 4,文献[14]给出了谱范数和Frobenius范数下距离A(1, i)最近的矩阵B的{1, i}-逆的具体表达式,参见文献[14]theorem 3.1和theorem 3.2.

本文的主要工作为:首先证明当谱范数和Frobenius范数推广到一般的酉不变范数时,文献[14]中给出的距离A(1, i)最近的矩阵B的{1, i}-逆不变;其次,利用该结果给出{1, 3}-和{1, 4}-逆在酉不变范数下的加法和乘法扰动界,所得扰动界推广和改进了文献[14]中的结果.

首先给出本文所用到的2个引理.

引理1[1]    设矩阵ACrm×n,则

A{1, 3}={A++(I-A+A)ZZCn×m}.另外,设 $\mathit{\boldsymbol{A}} = \mathit{\boldsymbol{U}}\left( {\begin{array}{*{20}{c}} \mathit{\boldsymbol{ \boldsymbol{\varSigma} }}&0\\ 0&0 \end{array}} \right){\mathit{\boldsymbol{V}}^*}$ 为矩阵A的奇异值分解,其中UCm×m, VCn×n为酉阵,Σ=diag(σ1, σ2, …, σr),则任意的A(1, 3)可以表示为

$ {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}} = \mathit{\boldsymbol{V}}\left( {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}}}&0\\ \mathit{\boldsymbol{L}}&\mathit{\boldsymbol{M}} \end{array}} \right){\mathit{\boldsymbol{U}}^ * }\;且\;{\mathit{\boldsymbol{A}}^ + } = \mathit{\boldsymbol{V}}\left( {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}}}&0\\ \mathit{\boldsymbol{L}}&\mathit{\boldsymbol{M}} \end{array}} \right){\mathit{\boldsymbol{U}}^ * }, $

其中L, M为适当阶数的矩阵.

引理2[14]    设矩阵X, YCm×n,如果X*Y=0,则‖X‖≤‖X+Y‖.

1 最佳逼近的{1, 3}-和{1, 4}-逆

本节将给出Bm(1, i)B{1, i}的具体表达式,使得对任意给定的A(1, i)A{1, i},满足

$ \mathop {\min }\limits_{{\mathit{\boldsymbol{B}}^{\left( {1,i} \right)}} \in \mathit{\boldsymbol{B}}\left\{ {1,i} \right\}} \left\| {{\mathit{\boldsymbol{B}}^{\left( {1,i} \right)}} - {\mathit{\boldsymbol{A}}^{\left( {1,i} \right)}}} \right\| = \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,i} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,i} \right)}}} \right\|, $

其中i=3, 4.

定理1    假设A, BCm×n.对于任意给定的A(1, 3)A{1, 3}, 存在唯一的矩阵

$ \mathit{\boldsymbol{B}}_m^{\left( {1,3} \right)} = {\mathit{\boldsymbol{B}}^ + } + \left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}} \right){\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}} \in \mathit{\boldsymbol{B}}\left\{ {1,3} \right\}, $

使得

$ \begin{array}{l} \mathop {\min }\limits_{{\mathit{\boldsymbol{B}}^{\left( {1,3} \right)}} \in \mathit{\boldsymbol{B}}\left\{ {1,3} \right\}} \left\| {{\mathit{\boldsymbol{B}}^{\left( {1,3} \right)}} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| = \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,3} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| = \\ \;\;\;\;\;\;\left\| {{\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\|. \end{array} $ (1)

证明    设ACrm×nBCsm×n的奇异值分解为:

$ \mathit{\boldsymbol{A}} = \mathit{\boldsymbol{U}}\left( {\begin{array}{*{20}{c}} \mathit{\boldsymbol{ \boldsymbol{\varSigma} }}&0\\ 0&0 \end{array}} \right){\mathit{\boldsymbol{V}}^ * },\mathit{\boldsymbol{B}} = \mathit{\boldsymbol{\tilde U}}\left( {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}&0\\ 0&0 \end{array}} \right){{\mathit{\boldsymbol{\tilde V}}}^ * }, $

其中, $\mathit{\boldsymbol{U}} = \left( {\mathop {{\mathit{\boldsymbol{U}}_1}}\limits^r \;\;\mathop {{\mathit{\boldsymbol{U}}_2}}\limits^{m - r} } \right)$ , $\mathit{\boldsymbol{\tilde U}} = \left( {\mathop {{{\mathit{\boldsymbol{\tilde U}}}_1}}\limits^s \;\;\mathop {{{\mathit{\boldsymbol{\tilde U}}}_2}}\limits^{m - s} } \right) \in {C^{m \times m}}$ $\mathit{\boldsymbol{V}} = \left( {\mathop {{\mathit{\boldsymbol{V}}_1}}\limits^r \;\;\mathop {{\mathit{\boldsymbol{V}}_2}}\limits^{n - r} } \right)$ , $\mathit{\boldsymbol{\tilde V}} = \left( {\mathop {{{\mathit{\boldsymbol{\tilde V}}}_1}}\limits^s \;\;\mathop {{{\mathit{\boldsymbol{\tilde V}}}_2}}\limits^{n - s} } \right) \in {C^{n \times n}}$ 都是酉阵,Σ=diag(σ1, σ2, …, σr), $\mathit{\pmb{\tilde \Sigma }} = {\rm{diag}}\left( {{{\tilde \sigma }_1},{{\tilde \sigma }_2}, \cdots ,{{\tilde \sigma }_s}} \right)$ ,且

$ {\sigma _1} \ge \cdots \ge {\sigma _r} > 0,\;\;\;\;\;{{\tilde \sigma }_1} \ge \cdots \ge {{\tilde \sigma }_s} > 0. $

由引理1知,对于给定的A(1, 3),存在适当阶数的矩阵LM, 使得 ${\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}} = \mathit{\boldsymbol{V}}\left( {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}}}&0\\ \mathit{\boldsymbol{L}}&{\mathit{\boldsymbol{M}}\;\;} \end{array}} \right){\mathit{\boldsymbol{U}}^*}$ , 且任意的B(1, 3)B{1, 3}都可以表示为

$ {\mathit{\boldsymbol{B}}^{\left( {1,3} \right)}} = \mathit{\boldsymbol{\tilde V}}\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}}&0\\ {\mathit{\boldsymbol{\tilde L}}}&{\mathit{\boldsymbol{\tilde M}}} \end{array}} \right){{\mathit{\boldsymbol{\tilde U}}}^ * }, $

其中, $\mathit{\boldsymbol{\tilde L}} \in {C^{\left( {n - s} \right) \times s}}$ $\mathit{\boldsymbol{\tilde M}} \in {C^{\left( {n - s} \right) \times (m - s)}}$ 是2个任意的矩阵.利用酉不变范数的性质,可得

$ \begin{array}{l} \left\| {{\mathit{\boldsymbol{B}}^{\left( {1,3} \right)}} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| = \left\| {\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}}&0\\ {\mathit{\boldsymbol{\tilde L}}}&{\mathit{\boldsymbol{\tilde M}}} \end{array}} \right){{\mathit{\boldsymbol{\tilde U}}}^ * }\mathit{\boldsymbol{U}} - {{\mathit{\boldsymbol{\tilde V}}}^ * }\mathit{\boldsymbol{V}}\left( {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}}}&0\\ \mathit{\boldsymbol{L}}&\mathit{\boldsymbol{M}} \end{array}} \right)} \right\| = \\ \left\| {\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_1} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_1}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_2}L}&{{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_2} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{M}}}\\ 0&0 \end{array}} \right)} \right. + \\ \left. {\left( {\begin{array}{*{20}{c}} 0&0\\ {\mathit{\boldsymbol{\tilde L\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_1} + \mathit{\boldsymbol{\tilde M\tilde U}}_2^ * {\mathit{\boldsymbol{U}}_1} - \mathit{\boldsymbol{H}}}&{\mathit{\boldsymbol{\tilde L\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_2} + \mathit{\boldsymbol{\tilde M\tilde U}}_2^ * {\mathit{\boldsymbol{U}}_2} - \mathit{\boldsymbol{\tilde V}}_2^ * {\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{M}}} \end{array}} \right)} \right\|, \end{array} $

其中, $\mathit{\boldsymbol{H}} = \mathit{\boldsymbol{\tilde V}}_2^*{\mathit{\boldsymbol{V}}_1}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}} + \mathit{\boldsymbol{\tilde V}}_2^*{\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{L}}$ .一方面,对上述等式的右端项应用引理2得

$ \begin{array}{l} \left\| {\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_1} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_1}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_2}L}&{{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_2} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{M}}}\\ 0&0 \end{array}} \right)} \right\| \le \\ \;\;\;\;\;\;\left\| {{\mathit{\boldsymbol{B}}^{\left( {1,3} \right)}} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\|. \end{array} $

另一方面,取 ${{\mathit{\boldsymbol{\tilde L}}}_m} = \mathit{\boldsymbol{HU}}_1^*{{\mathit{\boldsymbol{\tilde U}}}_1} + \mathit{\boldsymbol{\tilde V}}_2^*{\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{MU}}_2^*{{\mathit{\boldsymbol{\tilde U}}}_1}$ ${{\mathit{\boldsymbol{\tilde M}}}_m} = \mathit{\boldsymbol{HU}}_1^*{{\mathit{\boldsymbol{\tilde U}}}_2} + \mathit{\boldsymbol{\tilde V}}_2^*{\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{MU}}_2^*{{\mathit{\boldsymbol{\tilde U}}}_2}$ ,容易验证

$ {{\mathit{\boldsymbol{\tilde L}}}_m}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_1} + {{\mathit{\boldsymbol{\tilde M}}}_m}\mathit{\boldsymbol{\tilde U}}_2^ * {\mathit{\boldsymbol{U}}_1} - \mathit{\boldsymbol{H}} = 0, $

$ {{\mathit{\boldsymbol{\tilde L}}}_m}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_2} + {{\mathit{\boldsymbol{\tilde M}}}_m}\mathit{\boldsymbol{\tilde U}}_2^ * {\mathit{\boldsymbol{U}}_2} - \mathit{\boldsymbol{\tilde V}}_2^ * {\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{M}} = 0. $

因此

$ \begin{array}{l} \mathop {\min }\limits_{{\mathit{\boldsymbol{B}}^{\left( {1,3} \right)}} \in \mathit{\boldsymbol{B}}\left\{ {1,3} \right\}} \left\| {{\mathit{\boldsymbol{B}}^{\left( {1,3} \right)}} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| = \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,3} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| = \\ \left\| {\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_1} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_1}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_2}L}&{{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}\mathit{\boldsymbol{\tilde U}}_1^ * {\mathit{\boldsymbol{U}}_2} - \mathit{\boldsymbol{\tilde V}}_1^ * {\mathit{\boldsymbol{V}}_2}\mathit{\boldsymbol{M}}}\\ 0&0 \end{array}} \right)} \right\| = \\ \left\| {\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}}&0\\ 0&0 \end{array}} \right){{\mathit{\boldsymbol{\tilde U}}}^ * }\mathit{\boldsymbol{U}} - \left( {\begin{array}{*{20}{c}} \mathit{\boldsymbol{I}}&0\\ 0&0 \end{array}} \right){{\mathit{\boldsymbol{\tilde V}}}^ * }\mathit{\boldsymbol{V}}\left( {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}}}&0\\ \mathit{\boldsymbol{L}}&\mathit{\boldsymbol{M}} \end{array}} \right)} \right\| = \\ \left\| {\mathit{\boldsymbol{\tilde V}}\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}}&0\\ 0&0 \end{array}} \right){{\mathit{\boldsymbol{\tilde U}}}^ * } - \mathit{\boldsymbol{\tilde V}}\left( {\begin{array}{*{20}{c}} \mathit{\boldsymbol{I}}&0\\ 0&0 \end{array}} \right){{\mathit{\boldsymbol{\tilde V}}}^ * }\mathit{\boldsymbol{V}}\left( {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}^{ - 1}}}&0\\ \mathit{\boldsymbol{L}}&\mathit{\boldsymbol{M}} \end{array}} \right)\mathit{\boldsymbol{U}}} \right\| = \\ \left\| {{\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\|, \end{array} $

其中,

$ \mathit{\boldsymbol{B}}_m^{\left( {1,3} \right)} = \mathit{\boldsymbol{\tilde V}}\left( {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{ \boldsymbol{\tilde \varSigma} }}}^{ - 1}}}&0\\ {{{\mathit{\boldsymbol{\tilde L}}}_m}}&{{{\mathit{\boldsymbol{\tilde M}}}_m}} \end{array}} \right){{\mathit{\boldsymbol{\tilde U}}}^ * } = {\mathit{\boldsymbol{B}}^ + } + \left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}} \right){\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}. $

证毕.

注意到当且仅当G*A*{1, 3}时, GA{1, 4},因此利用上述定理中的结果,容易得到下面的定理.

定理2    假设A, BCm×n.对于任意给定的A(1, 4)A{1, 4},存在唯一的矩阵:

$ \mathit{\boldsymbol{B}}_m^{\left( {1,4} \right)} = {\mathit{\boldsymbol{B}}^ + } + {\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{B}}^ + }} \right) \in \mathit{\boldsymbol{B}}\left\{ {1,4} \right\}, $

使得

$ \begin{array}{l} \mathop {\min }\limits_{{\mathit{\boldsymbol{B}}^{\left( {1,4} \right)}} \in \mathit{\boldsymbol{B}}\left\{ {1,4} \right\}} \left\| {{\mathit{\boldsymbol{B}}^{\left( {1,4} \right)}} - {\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}} \right\| = \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,4} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}} \right\| = \\ \;\;\;\;\;\;\left\| {{\mathit{\boldsymbol{B}}^ + } + {\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{B}}^ + }} \right\|. \end{array} $

注记1    当定理1和定理2中的酉不变范数取为谱范数或Frobenius范数时,定理1和定理2中的结果就分别变成文献[14]中的theorem 3.1和theorem 3.2.

2 {1, 3}-和{1, 4}-逆的加法和乘法扰动界

利用上节结果,本节将给出{1, 3}-和{1, 4}-逆的加法和乘法扰动界.

定理3    设A, B=A+ECm×n,rank(A)=rank(B),且满足‖A+2E2 < 1.对于任意给定的A(1, 3),若Bm(1, 3)由定理1给出,则下面的估计式成立:

$ \begin{array}{l} \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,3} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| \le \left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|_2^2\left\| {\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right)\mathit{\boldsymbol{E}}} \right\| + \\ \;\;\;\;{\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|_2}{\left\| {\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{E}}} \right\|_2}\left\| {{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| + \left( {{{\left\| \mathit{\boldsymbol{E}} \right\|}_2}\left\| \mathit{\boldsymbol{E}} \right\|} \right). \end{array} $

证明    对于给定的A(1, 3),由引理1知,存在矩阵ZCn×m,使得A(1, 3)=A++(I-A+A)Z.另外,易见

$ \begin{array}{l} {\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{A}}^ + } = {\mathit{\boldsymbol{B}}^ + }\left( {\mathit{\boldsymbol{A}} - \mathit{\boldsymbol{B}}} \right){\mathit{\boldsymbol{A}}^ + } + {\mathit{\boldsymbol{B}}^ + }\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right) - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}} \right){\mathit{\boldsymbol{A}}^ + }. \end{array} $ (2)

故由式(1)、(2)及B=A+E可得

$ \begin{array}{l} \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,3} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| = \left\| {{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}\left( {{\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{A}}^ + } - \left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right)\mathit{\boldsymbol{Z}}} \right)} \right\| \le \\ \;\;\;\;\;\;\left\| { - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{E}}{\mathit{\boldsymbol{A}}^ + } - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{E}}\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right)\mathit{\boldsymbol{Z}}} \right\| + \\ \;\;\;\;\;\;\left\| {{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{B}}^ + }\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right)} \right\| = \left\| {{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{E}}{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| + \\ \;\;\;\;\;\;\left\| {{\mathit{\boldsymbol{B}}^ + }{{\left( {{\mathit{\boldsymbol{B}}^ + }} \right)}^ * }{\mathit{\boldsymbol{E}}^ * }\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right)} \right\| \le \\ \;\;\;\;\;\;{\left\| {{\mathit{\boldsymbol{B}}^ + }} \right\|_2}{\left\| {\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{E}}} \right\|_2}\left\| {{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| + \\ \;\;\;\;\;\;\left\| {{\mathit{\boldsymbol{B}}^ + }} \right\|_2^2\left\| {\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right)\mathit{\boldsymbol{E}}} \right\|. \end{array} $

另外, 由定理的条件知:

$ {\left\| {{\mathit{\boldsymbol{B}}^ + }} \right\|_2} \le \frac{{{{\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|}_2}}}{{1 - {{\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|}_2}{{\left\| \mathit{\boldsymbol{E}} \right\|}_2}}}. $

从而可推得结论成立.证毕.

定理4    假设ACm×nB=D1*AD2Bm(1, 3)由定理1给出,对于任意给定的A(1, 3),如果max{‖I-D12, ‖I-D22} < 1,则下面的估计式成立:

$ \begin{array}{*{20}{c}} {\left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,3} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| \le {{\left\| {1 - {t_1}\mathit{\boldsymbol{D}}_2^{ - 1}} \right\|}_2}\left\| {{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| + }\\ {\frac{{{{\left\| {1 - \overline {{t_1}} {\mathit{\boldsymbol{D}}_1}} \right\|}_2} + {{\left\| {1 - {t_2}\mathit{\boldsymbol{D}}_1^{ - 1}} \right\|}_2}}}{{\mathit{\Phi }\left( {{\mathit{\boldsymbol{D}}_1},{\mathit{\boldsymbol{D}}_2}} \right)}}\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|,} \end{array} $

其中,Φ(D1, D2)=(1-‖I-D12)(1-‖I-D22),且t1t2为任意复数.

证明    由B=D1*AD2,可得

$ \mathit{\boldsymbol{BD}}_2^{ - 1} = \mathit{\boldsymbol{D}}_1^ * \mathit{\boldsymbol{A}},\mathit{\boldsymbol{D}}_1^{ - * }\mathit{\boldsymbol{B}} = \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{D}}_2}, $ (3)

其中D1-*表示D1逆矩阵的共轭转置矩阵.利用式(3)可证得

$ {\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{BD}}_2^{ - 1}{\mathit{\boldsymbol{A}}^ + }\mathit{\boldsymbol{D}}_1^{ - * }\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{B}}^ + }. $

当max{‖I-D12, ‖I-D22} < 1时,有

$ \begin{array}{l} \left\| {{\mathit{\boldsymbol{B}}^ + }} \right\| \le {\left\| {\mathit{\boldsymbol{D}}_2^{ - 1}} \right\|_2}{\left\| {\mathit{\boldsymbol{D}}_1^{ - 1}} \right\|_2}\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\| = \\ \;\;\;\;{\left\| {{{\left( {\mathit{\boldsymbol{I}} - \left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{D}}_2}} \right)} \right)}^{ - 1}}} \right\|_2}{\left\| {{{\left( {\mathit{\boldsymbol{I}} - \left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{D}}_1}} \right)} \right)}^{ - 1}}} \right\|_2} \times \\ \;\;\;\;\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\| \le \frac{{\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|}}{{\mathit{\Phi }\left( {{\mathit{\boldsymbol{D}}_1},{\mathit{\boldsymbol{D}}_2}} \right)}}. \end{array} $ (4)

对于给定的A(1, 3),由引理1知,存在矩阵ZCn×m,使得A(1, 3)=A++(I-A+A)Z.

综合式(2)和(3),得到

$ \begin{array}{l} {\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}} = {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}\left( {{\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{A}}^ + } - \left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}^ + }\mathit{\boldsymbol{A}}} \right)\mathit{\boldsymbol{Z}}} \right) = \\ \;\;\;\;\;\;\;{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}\left( {{\mathit{\boldsymbol{B}}^ + }\left( {\mathit{\boldsymbol{I}} - {t_1}\mathit{\boldsymbol{D}}_1^ * } \right)\mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + } - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}\left( {\mathit{\boldsymbol{I}} - {t_1}\mathit{\boldsymbol{D}}_2^{ - 1}} \right){\mathit{\boldsymbol{A}}^ + } + } \right.\\ \;\;\;\;\;\;\;\left. {{\mathit{\boldsymbol{B}}^ + }\left( {\mathit{\boldsymbol{I}} - {t_2}\mathit{\boldsymbol{D}}_1^{ - 1}} \right)\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{A}}^ + }} \right) - \left( {\mathit{\boldsymbol{I}} - {t_1}\mathit{\boldsymbol{D}}_2^{ - 1}} \right)\left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}^ + }\mathit{\boldsymbol{A}}} \right)\mathit{\boldsymbol{Z}}} \right), \end{array} $

由上式和式(4), 可得

$ \begin{array}{l} \left\| {{\mathit{\boldsymbol{B}}^ + } - {\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| \le \\ \left( {{{\left\| {\mathit{\boldsymbol{I}} - {t_1}\mathit{\boldsymbol{D}}_1^ * } \right\|}_2} + {{\left\| {\mathit{\boldsymbol{I}} - {t_2}\mathit{\boldsymbol{D}}_1^{ - 1}} \right\|}_2}} \right)\left\| {{\mathit{\boldsymbol{B}}^ + }} \right\| + \\ {\left\| {\mathit{\boldsymbol{I}} - {t_1}\mathit{\boldsymbol{D}}_2^{ - 1}} \right\|_2}\left\| {{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| \le {\left\| {\mathit{\boldsymbol{I}} - {t_1}\mathit{\boldsymbol{D}}_2^{ - 1}} \right\|_2}\left\| {{\mathit{\boldsymbol{A}}^{\left( {1,3} \right)}}} \right\| + \\ \frac{{{{\left\| {\mathit{\boldsymbol{I}} - \overline {{t_1}} {\mathit{\boldsymbol{D}}_1}} \right\|}_2} + {{\left\| {\mathit{\boldsymbol{I}} - {t_2}\mathit{\boldsymbol{D}}_1^{ - 1}} \right\|}_2}}}{{\mathit{\Phi }\left( {{\mathit{\boldsymbol{D}}_1},{\mathit{\boldsymbol{D}}_2}} \right)}}\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|. \end{array} $

证毕.

再次利用GA{1, 4}当且仅当G*A*{1, 3},由定理3和定理4即得{1, 4}-逆的加法和乘法扰动界:

定理5    设A, B=A+ECm×n,rank(A)=rank(B)且满足‖A+2E2 < 1.对于任意给定的A(1, 4),若Bm(1, 4)由定理2给出,则下面的估计式成立:

$ \begin{array}{l} \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,4} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}} \right\| \le \left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|_2^2\left\| {\mathit{\boldsymbol{E}}\left( {\mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{A}}^ + }\mathit{\boldsymbol{A}}} \right)} \right\| + \\ \;\;\;\;\;{\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|_2}{\left\| {\mathit{\boldsymbol{E}}{\mathit{\boldsymbol{B}}^ + }\mathit{\boldsymbol{B}}} \right\|_2}\left\| {{\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}} \right\| + O\left( {{{\left\| \mathit{\boldsymbol{E}} \right\|}_2}\left\| \mathit{\boldsymbol{E}} \right\|} \right). \end{array} $

定理6    假设ACm×nB=D1*AD2, Bm(1, 4)由定理2给出, 对于任意给定的A(1, 4),若max{‖I-D12, ‖I-D22} < 1,则有

$ \begin{array}{l} \left\| {\mathit{\boldsymbol{B}}_m^{\left( {1,4} \right)} - {\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}} \right\| \le {\left\| {1 - \overline {{t_1}} \mathit{\boldsymbol{D}}_1^{ - 1}} \right\|_2}\left\| {{\mathit{\boldsymbol{A}}^{\left( {1,4} \right)}}} \right\| + \\ \;\;\;\;\;\;\frac{{{{\left\| {\mathit{\boldsymbol{I}} - {t_1}{\mathit{\boldsymbol{D}}_2}} \right\|}_2} + {{\left\| {\mathit{\boldsymbol{I}} - \overline {{t_2}} \mathit{\boldsymbol{D}}_2^{ - 1}} \right\|}_2}}}{{\mathit{\Phi }\left( {{\mathit{\boldsymbol{D}}_1},{\mathit{\boldsymbol{D}}_2}} \right)}}\left\| {{\mathit{\boldsymbol{A}}^ + }} \right\|, \end{array} $

其中,Φ(D1, D2)=(1-‖I-D12)(1-‖I-D22),t1t2为任意复数.

注记2    当定理3和定理5中的酉不变范数取为谱范数或Frobenius范数时,定理3和定理5就是文献[14]中的theorem 4.1;当定理4和定理6中的酉不变范数取为谱范数或Frobenius范数且t1=t2=1时,定理4和定理6就变为文献[14]中的theorem 5.2.另外,注意到定理4和定理6给出的扰动界对任意复数t1t2都成立,从而改进了文献[14]的结果.

参考文献
[1] BEN-ISRAEL A, GREVILLE T N E. Generalized Inverses: Theory and Applications[M]. 2nd ed. New York: Springer, 2003.
[2] WEDIN P Å. Perturbation theory for pseudoinverse[J]. BIT, 1973, 13(2): 217–232. DOI:10.1007/BF01933494
[3] STEWART G W. On the perturbation of pseudo-inverses, projections, and linear least squares problems[J]. SIAM Review, 1977, 19(4): 634–662. DOI:10.1137/1019104
[4] 孙继广. 矩阵扰动分析[M]. 第2版. 北京: 科学出版社, 2011.
SUN J G. Matrix Perturbation Analysis[M]. 2nd ed. Beijing: Science Press, 2011.
[5] WEI Y, LI X, BU F. A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 27(1): 72–81. DOI:10.1137/S0895479804439948
[6] CASTRO-GONZÁLEZ N, DOPICO F, MOLERA J. Multiplicative perturbation theory of the Moore-Penrose inverse and the least squares problem[J]. Linear Algebra and its Applications, 2016, 503: 1–25. DOI:10.1016/j.laa.2016.03.027
[7] HU N, LUO W, SONG C, et al. Norm estimations for the Moore-Penrose inverse of multiplicative perturbations of matrices[J]. Journal of Mathematical Analysis and Applications, 2016, 437(1): 498–512. DOI:10.1016/j.jmaa.2016.01.020
[8] CAI L, XU W, LI W. Additive and multiplicative perturbation bounds for the Moore-Penrose inverse[J]. Linear Algebra and its Applications, 2011, 434: 480–489. DOI:10.1016/j.laa.2010.08.037
[9] MENG L, ZHENG B. The optimal perturbation bounds of the Moore-Penrose inverse under the Frobenius norm[J]. Linear Algebra and its Applications, 2010, 432(4): 956–963. DOI:10.1016/j.laa.2009.10.009
[10] MENG L, ZHENG B. New multiplicative perturbation bounds of the Moore-Penrose inverse[J]. Linear and Multilinear Algebra, 2015, 63(5): 1037–1048. DOI:10.1080/03081087.2014.917643
[11] ZHANG P, YANG H. A note on multiplicative perturbation bounds for the Moore-Penrose inverse[J]. Linear and Multilinear Algebra, 2014, 62(6): 831–838. DOI:10.1080/03081087.2013.791818
[12] LIU X, WANG W, WEI Y. Continuity properties of the {1}-inverse and perturbation bounds for the Drazin inverse[J]. Linear Algebra and its Applications, 2008, 429: 1026–1037. DOI:10.1016/j.laa.2007.03.032
[13] WEI M, LING S. On the perturbation bounds of g-inverse and oblique projections[J]. Linear Algebra and its Applications, 2010, 433: 1778–1792. DOI:10.1016/j.laa.2010.06.036
[14] MENG L, ZHENG B, MA P. Perturbation bounds of generalized inverses[J]. Applied Mathematics and Computation, 2017, 296: 88–100. DOI:10.1016/j.amc.2016.10.017