文章快速检索     高级检索
  浙江大学学报(理学版)  2018, Vol. 45 Issue (2): 131-135, 161  DOI:10.3785/j.issn.1008-9497.2018.02.001
0

引用本文 [复制中英文]

孙玉虹, 李德生, 李玉双. 具有阻尼项的二阶非线性时滞中立型动力方程的振动性[J]. 浙江大学学报(理学版), 2018, 45(2): 131-135, 161. DOI: 10.3785/j.issn.1008-9497.2018.02.001.
[复制中文]
Oscillation of second-order nonlinear delay neutral dynamic equations with damping term[J]. Journal of Zhejiang University(Science Edition), 2018, 45(2): 131-135, 161. DOI: 10.3785/j.issn.1008-9497.2018.02.001.
[复制英文]

基金项目

河北省自然科学基金资助项目(A2016203101)

作者简介

孙玉虹(1993-),ORCID:http://orcid.org/0000-0002-6226-4736, 女, 硕士研究生, 主要从事时间尺度上时滞动力方程振动性研究, E-mail:15033527929@163.com

文章历史

收稿日期:2016-12-28
具有阻尼项的二阶非线性时滞中立型动力方程的振动性
孙玉虹 , 李德生 , 李玉双     
燕山大学 理学院, 河北 秦皇岛 066000
摘要: 研究了时间尺度上一类新的具有阻尼项的二阶非线性时滞中立型动力方程的振动性,基于时间尺度上的微积分理论、Riccati变换、H函数法和不等式技巧,得到了该方程振动的一些新的充分条件,推广了已有研究的结果,丰富了二阶时滞动力方程的振动性.最后,通过例子验证了相关结果.
关键词: 时间尺度    阻尼项    中立项    振动性    时滞动力方程    
Oscillation of second-order nonlinear delay neutral dynamic equations with damping term
Abstract: By means of the Riccati transform, H function method and inequality technique, We studied a new class of second-order nonlinear neutral dynamic equations with damping term on time scales for the first time. Some new sufficient conditions for the oscillation of the equation are obtained, which improve the conclusions of the previous literature and enrich the oscillation of second order delay dynamic equations. Finally, the results are verified by examples.
Key words: time scale    damping term    neutral term    oscillation    delay dynamic equation    

德国学者HILGER[1]于1988年首次提出了时间尺度上的分析理论, 并发表了将离散分析和连续分析相统一的数学理论[2],引起了学术界的广泛关注.之后, 学者们开始对时间尺度上动力方程的振动性进行了研究, 给出了一些非常好的结果[1-18], 对中立型动力方程的研究也取得了一些结果[9-18].

文献[12]研究了二阶中立型时滞动力方程

$ {\left[ {r\left( t \right){y^\Delta }\left( t \right)} \right]^\Delta } + f\left( {t,x\left( {t - \delta } \right)} \right) = 0,\;\;\;\;\;t \in T $

的振动性, 其中y(t)=x(t)+p(t)x(t-τ), 得到了一些新的结果.文献[13]研究了一类二阶非线性中立型时滞动力方程

$ {\left[ {r\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]^\Delta } + f\left( {t,x\left( {\delta \left( t \right)} \right)} \right) = 0,\;\;\;\;\;t \in T $

的振动性, 其中y(t)=x(t)+p(t)x(t-τ), 给出了几个方程振动的充分条件.文献[14]借助Riccati变换技术研究了二阶非线性中立型时滞动力方程

$ \begin{array}{l} {\left[ {A\left( t \right){y^\Delta }\left( t \right)} \right]^\Delta } + {P_1}\left( t \right){f_1}\left( {x\left( {\delta \left( t \right)} \right)} \right) + \\ \;\;\;\;\;\;\;{P_2}\left( t \right){f_2}\left( {x\left( {\delta \left( t \right)} \right)} \right) = 0,\;\;\;\;\;t \in T \end{array} $

的振动性, 其中y(t)=x(t)+B(t)g(x(τ(t))), 得到了方程振动的几个新的充分条件, 推广并改进了已有文献的相关结果.文献[15]研究了一类具有阻尼项的二阶非线性中立型变时滞动力方程

$ {\left[ {A\left( t \right){y^\Delta }\left( t \right)} \right]^\Delta } + b\left( t \right){y^\Delta }\left( t \right) + F\left( {t,x\left( {\delta \left( t \right)} \right)} \right) = 0 $

的振动性, 其中y(t)=x(t)+B(t)g(x(τ(t))), 得到了该方程的振动定理.

本文基于时间尺度上的微积分理论、Riccati变换、H函数法和不等式技巧,对一类新的具有阻尼项的二阶非线性时滞中立型动力方程

$ {\left( {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right)^\Delta } + b\left( t \right){\left( {{y^\Delta }\left( t \right)} \right)^\gamma } + F\left( {t,x\left( {\delta \left( t \right)} \right)} \right) = 0 $ (1)

的振动性进行研究, 其中0 < γ≤1, y(t)=x(t)+B(t)g(x(τ(t))).

由于我们感兴趣的是方程解的振动性, 所以假设时间尺度T是无界的, 即它是时间尺度上的无穷区间[t0, ∞)T=[t0, ∞)∩T.以下假设贯穿全文:

(H1) τ, δTT都是滞量函数, τ(t)≤t, 且$\mathop {{\rm{lim}}}\limits_{t \to \infty } \tau (t) = \infty $ ; δ(t)≤t, $\mathop {{\rm{lim}}}\limits_{t \to \infty } \delta (t) = \infty $ 并且τ(δ(t))=δ(τ(t)).

(H2)滞量τ是严格递增的, $\widetilde T = \tau \left(T \right) \subseteq T$ 是一时间尺度, τ°σ=σ°ττΔ(t)=τ0>0, δ(t)≥τ(t).

(H3) bCrd(T, [0, ∞)), 即b(t)是定义在T上的实值rd-连续函数, BCrd(T, R),且0≤B(t)≤b0 < ∞(这里b0是常数).

(H4) ACrd(T, (0, ∞)), -b/AR +, 并且$\int_{{t_0}}^\infty {{{\left({\frac{{{e_{-b/A}}(s, {t_0})}}{{A\left(s \right)}}} \right)}^{1/\gamma }}\Delta s{\rm{ = }}\infty } $ .

(H5) gC(R, R)且当u≠0时ug(u)>0, g(u)/uη(这里0 < η≤1为常数).

(H6) F∈(T×R, R), uF(t, u)>0(u≠0), 且$\exists $ pCrd(T, (0, ∞))使得|F(t, u)|≥p(t)uγ.

为了更好地证明本文的主要结果, 先引入2个引理.

引理1 [15]如果gR +, 即g(t)∈Crd(T, R),且对任意的t∈[t0, +∞)T, 满足1+μ(t)g(t)>0.则初值问题yΔ(t)=g(t)y(t), y(t0)=y0R在[t0, +∞)T上有唯一的正解eg(t, t0),并满足半群性质eg(a, b)eg(b, c)=eg(a, c).

引理2 [15]τ(t)是严格递增的, $\widetilde T \subseteq T$ 是一时间尺度, τ(σ(t))=σ(τ(t)).设x$\widetilde T \to R$, 如果τΔ(t)和xΔ(τ(t))存在(tTk), 则(x(τ(t)))Δ存在, 且

$ {\left( {x\left( {\tau \left( t \right)} \right)} \right)^\Delta } = {x^\Delta }\left( {\tau \left( t \right)} \right){\tau ^\Delta }\left( t \right). $ (2)
1 主要结果

定理1  若有函数φ(t)∈Crd1([t0, ∞)T, (0, ∞)), 使得

$ \begin{array}{l} \mathop {\lim \sup }\limits_{t \to \infty } \int_{{t_0}}^t {\left\{ {\xi \left( s \right)\varphi \left( s \right) - \frac{{A\left( {\tau \left( s \right)} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{{\left( {{\tau _0}\varphi \left( s \right)} \right)}^\gamma }}} \times } \right.} \\ \;\;\;\;\;\;\;\;\left[ {{{\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( s \right)}}{{{A^\sigma }\left( s \right)}}} \right)}^{\gamma + 1}} + } \right.\\ \;\;\;\;\;\;\;\;\left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}{A^\sigma }\left( {\tau \left( s \right)} \right)}}} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s = \infty , \end{array} $ (3)

其中, ξ(t)=min{p(t), p(τ(t))}, 则方程(1)在[t0, ∞)T上是振动的.

证明 假设方程(1)在[t0, ∞)T上有一非振动解x(t), 不失一般性, 不妨设最终解为正, 即存在t1∈[t0, ∞)T使得x(t)>0, x(τ(t))>0, x(δ(t))>0, t∈[t1, ∞)T,则y(t)>0.由方程(1), 得

$ {\left( {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right)^\Delta } + b\left( t \right){\left( {{y^\Delta }\left( t \right)} \right)^\gamma } < 0. $ (4)

利用引理1, 可得

$ \begin{array}{l} {\left[ {\frac{{A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }}}{{{e_{ - b/A}}\left( {t,{t_0}} \right)}}} \right]^\Delta } = \frac{{{{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]}^\Delta }{e_{ - b/A}}\left( {t,{t_0}} \right)}}{{{e_{ - b/A}}\left( {t,{t_0}} \right){e_{ - b/A}}\left( {\sigma \left( t \right),{t_0}} \right)}} - \\ \frac{{A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }{{\left[ {{e_{ - b/A}}\left( {t,{t_0}} \right)} \right]}^\Delta }}}{{{e_{ - b/A}}\left( {t,{t_0}} \right){e_{ - b/A}}\left( {\sigma \left( t \right),{t_0}} \right)}} = \frac{{{{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]}^\Delta }}}{{{e_{ - b/A}}\left( {\sigma \left( t \right),{t_0}} \right)}} + \\ \frac{{b\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }}}{{{e_{ - b/A}}\left( {\sigma \left( t \right),{t_0}} \right)}} \leqslant - \frac{{p\left( t \right){x^\gamma }\left( {\delta \left( t \right)} \right)}}{{{e_{ - b/A}}\left( {\sigma \left( t \right),{t_0}} \right)}} < 0, \end{array} $ (5)

所以$\frac{{A(t){{({y^\Delta }(t))}^\gamma }}}{{{e_{-b/A}}(t, {t_0})}}$ 严格递减且定号, 可断言yΔ(t)>0.否则存在t2∈[t1, ∞)T, 使得当t∈[t2, ∞)T时, yΔ(t) < 0.则有

$ \begin{array}{*{20}{c}} {\frac{{A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }}}{{{e_{ - b/A}}\left( {t,{t_0}} \right)}} \leqslant \frac{{A\left( {{t_2}} \right){{\left( {{y^\Delta }\left( {{t_2}} \right)} \right)}^\gamma }}}{{{e_{ - b/A}}\left( {{t_2},{t_0}} \right)}} = }\\ { - M < 0,\;\;\;t \in {{\left[ {{t_2},\infty } \right)}_T},} \end{array} $ (6)

其中,$M = \frac{{-A({t_2}){{({y^\Delta }({t_2}))}^\gamma }}}{{{e_{-b/A}}({t_2}, {t_0})}} > 0$ .

因此,${y^\Delta }(t) \leqslant {\left({-M\frac{{{e_{-b/A}}(t, {t_0})}}{{A(t)}}} \right)^{1/\gamma }}$ ,

进一步有

$ \begin{array}{l} y\left( t \right) \leqslant y\left( {{t_2}} \right) - {M^{1/\gamma }}\int_{{t_2}}^t {{{\left( {\frac{{{e_{ - b/A}}\left( {s,{t_0}} \right)}}{{A\left( s \right)}}} \right)}^{1/\gamma }}} \Delta s \to \\ \;\;\;\;\;\;\;\;\; - \infty ,\;\;\;t \to \infty . \end{array} $ (7)

这与y(t)>0矛盾, 故yΔ(t)>0, t∈[t1, ∞)T.

利用式(4), 可得

$ \begin{array}{l} {\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]^\Delta }/{\left( {{\tau ^\Delta }\left( t \right)} \right)^\gamma } + \\ b\left( t \right){\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)^\gamma } + p\left( {\tau \left( t \right)} \right){x^\gamma }\left( {\delta \left( {\tau \left( t \right)} \right)} \right) \leqslant 0, \end{array} $ (8)

综合式(8)及式(4), 当t∈[t1, ∞)T时, 得

$ \begin{array}{l} {\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]^\Delta } + b\left( t \right){\left( {{y^\Delta }\left( t \right)} \right)^\gamma } + p\left( t \right){x^\gamma }\left( {\delta \left( t \right)} \right) + \\ \;\;\;\;\;\;\;{b_0}\eta \left\{ {\frac{{{{\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]}^\Delta }}}{{{{\left( {{\tau ^\Delta }\left( t \right)} \right)}^\gamma }}} + b\left( t \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma } + } \right.\\ \;\;\;\;\;\;\;\left. {p\left( {\tau \left( t \right)} \right){x^\gamma }\left( {\delta \left( {\tau \left( t \right)} \right)} \right)} \right\} \leqslant 0. \end{array} $ (9)

由于y(t)≤x(t)+b0ηx(τ(t)), 并利用ξ(t)的定义及τΔ(t)=τ0>0, δ(t)≥τ(t), 得

$ \begin{array}{l} {\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]^\Delta } + {\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]^\Delta }\frac{{{b_0}\eta }}{{\tau _0^\gamma }} + \\ \;\;\;\;\;\;\;b\left( t \right){\left( {{y^\Delta }\left( t \right)} \right)^\gamma } + {b_0}\eta b\left( t \right){\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)^\gamma } \leqslant \\ \;\;\;\;\;\;\; - \xi \left( t \right){y^\gamma }\left( {\delta \left( t \right)} \right) \leqslant - \xi \left( t \right){y^\gamma }\left( {\tau \left( t \right)} \right). \end{array} $ (10)

由式(4)和yΔ(t)>0可知,[A(t)(yΔ(t))γ]Δ≤0, 故

$ A\left( t \right){\left( {{y^\Delta }\left( t \right)} \right)^\gamma } \geqslant A\left( {\sigma \left( t \right)} \right){\left( {{y^\Delta }\left( {\sigma \left( t \right)} \right)} \right)^\gamma }, $
$ A\left( {\tau \left( t \right)} \right){\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)^\gamma } \geqslant A\left( {\tau \left( {\sigma \left( t \right)} \right)} \right){\left( {{y^\Delta }\left( {\tau \left( {\sigma \left( t \right)} \right)} \right)} \right)^\gamma }. $

因此, 式(10)可写成

$ \begin{array}{l} {\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]^\Delta } + {\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]^\Delta }\frac{{{b_0}\eta }}{{\tau _0^\gamma }} \leqslant \\ - \xi \left( t \right){y^\gamma }\left( {\tau \left( t \right)} \right) - \frac{{b\left( t \right)}}{{A\left( t \right)}}{\left( {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right)^\sigma } - \\ \frac{{{b_0}\eta }}{{A\left( {\tau \left( t \right)} \right)}} \times b\left( {\tau \left( t \right)} \right){\left( {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right)^\sigma }. \end{array} $ (11)

定义函数

$ w\left( t \right) = \varphi \left( t \right) \times \frac{{A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}},\;\;\;\;\;t \in {\left[ {{t_1},\infty } \right)_T}, $ (12)

w(t)>0.由引理2和式(12)得

$ \begin{array}{l} {w^\Delta }\left( t \right) = \frac{{\varphi \left( t \right){{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]}^\Delta }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}} + {\left[ {\frac{{\varphi \left( t \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}}} \right]^\Delta } \times \\ {\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]^\sigma } = \frac{{\varphi \left( t \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}}{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]^\Delta } + \\ \frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{w^\sigma }\left( t \right) - \frac{{{{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]}^\sigma }\varphi \left( t \right){{\left[ {{y^\gamma }\left( {\tau \left( t \right)} \right)} \right]}^\Delta }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right){y^{\gamma \sigma }}\left( {\tau \left( t \right)} \right)}}. \end{array} $

由链式法则和0 < γ≤1知

$ {\left[ {{y^\gamma }\left( {\tau \left( t \right)} \right)} \right]^\Delta } \geqslant \gamma {\tau _0}{\left( {{y^\sigma }\left( {\tau \left( t \right)} \right)} \right)^{\gamma - 1}}{y^\Delta }\left( {\tau \left( t \right)} \right), $

即得

$ \begin{array}{l} {w^\Delta }\left( t \right) \leqslant \frac{{\varphi \left( t \right){{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]}^\Delta }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}} + \frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}} \times {w^\sigma }\left( t \right) - \\ \frac{{\gamma {\tau _0}\varphi \left( t \right){{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]}^\sigma }{{\left( {{y^\sigma }\left( {\tau \left( t \right)} \right)} \right)}^{\gamma - 1}}{y^\Delta }\left( {\tau \left( t \right)} \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right){y^{\gamma \sigma }}\left( {\tau \left( t \right)} \right)}} \leqslant \\ \frac{{\varphi \left( t \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}}{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]^\Delta } + \frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{w^\sigma }\left( t \right) - \\ \frac{{\gamma {\tau _0}\varphi \left( t \right){{\left( {{w^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}}}{{{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}}. \end{array} $ (13)

另一方面, 定义函数

$ v\left( t \right) = \varphi \left( t \right) \times \frac{{A\left( t \right)\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}},\;\;\;\;\;t \in {\left[ {{t_1},\infty } \right)_T}. $ (14)

v(t)>0.和上面的情形类似, 得

$ \begin{array}{l} {v^\Delta }\left( t \right) = {\left[ {\frac{{\varphi \left( t \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}}} \right]^\Delta }{\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]^\sigma } + \\ \;\;\;\;\;\;\;\frac{{\varphi \left( t \right){{\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]}^\Delta }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}} \leqslant \frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{v^\sigma }\left( t \right) + \\ \;\;\;\;\;\;\;\frac{{\varphi \left( t \right){{\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]}^\Delta }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}} - \gamma {\tau _0}\varphi \left( t \right) \times \\ \;\;\;\;\;\;\;{\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]^\sigma }\frac{{{{\left( {{y^\sigma }\left( {\tau \left( t \right)} \right)} \right)}^{\gamma - 1}}{y^\Delta }\left( {\tau \left( t \right)} \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right){y^{\gamma \sigma }}\left( {\tau \left( t \right)} \right)}} \leqslant \\ \;\;\;\;\;\;\;\frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{v^\sigma }\left( t \right) + \frac{{\varphi \left( t \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}}{\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]^\Delta } - \\ \;\;\;\;\;\;\;\left( {\gamma {\tau _0}\varphi \left( t \right){{\left( {{v^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}} \right)/\left( {{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)} \right). \end{array} $ (15)

由式(11)、(13)、(15)和y(τ(t))≤y(σ(τ(t)))得

$ \begin{array}{l} {w^\Delta }\left( t \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{v^\Delta }\left( t \right) \leqslant \frac{{\varphi \left( t \right)}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}} \times \left\{ {{{\left[ {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right]}^\Delta } + } \right.\\ \left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left[ {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right]}^\Delta }} \right\} + \frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{w^\sigma }\left( t \right) - \\ \frac{{\gamma {\tau _0}\varphi \left( t \right){{\left( {{w^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}}}{{{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}} + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{v^\sigma }\left( t \right) - \\ \frac{{{b_0}\eta }}{{\tau _0^\gamma }} \times \frac{{\gamma {\tau _0}\varphi \left( t \right){{\left( {{v^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}}}{{{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}} \leqslant - \xi \left( t \right)\varphi \left( t \right) - \\ \frac{{\varphi \left( t \right)b\left( t \right)}}{{A\left( t \right)}} \times \frac{{{{\left( {A\left( t \right){{\left( {{y^\Delta }\left( t \right)} \right)}^\gamma }} \right)}^\sigma }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}} - \frac{{{b_0}\eta \varphi \left( t \right)b\left( {\tau \left( t \right)} \right)}}{{A\left( {\tau \left( t \right)} \right)}} \times \\ \frac{{{{\left( {A\left( {\tau \left( t \right)} \right){{\left( {{y^\Delta }\left( {\tau \left( t \right)} \right)} \right)}^\gamma }} \right)}^\sigma }}}{{{y^\gamma }\left( {\tau \left( t \right)} \right)}} + \frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{w^\sigma }\left( t \right) - \\ \frac{{\gamma {\tau _0}\varphi \left( t \right){{\left( {{w^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}}}{{{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}} + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{v^\sigma }\left( t \right) - \\ \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\frac{{\gamma {\tau _0}\varphi \left( t \right){{\left( {{\sigma ^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}}}{{{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}} \leqslant - \xi \left( t \right)\varphi \left( t \right) - \\ \frac{{\varphi \left( t \right)b\left( t \right)}}{{A\left( t \right){\varphi ^\sigma }\left( t \right)}}{w^\sigma }\left( t \right) - \frac{{{b_0}\eta \varphi \left( t \right)b\left( {\tau \left( t \right)} \right)}}{{A\left( {\tau \left( t \right)} \right){\varphi ^\sigma }\left( t \right)}}{v^\sigma }\left( t \right) + \\ \frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}{w^\sigma }\left( t \right) - \frac{{\gamma {\tau _0}\varphi \left( t \right){{\left( {{w^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}}}{{{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}} + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\frac{{{\varphi ^\Delta }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}} \times \\ {v^\sigma }\left( t \right) - \frac{{{b_0}\eta }}{{\tau _0^\gamma }} \times \frac{{\gamma {\tau _0}\varphi \left( t \right){{\left( {{v^\sigma }\left( t \right)} \right)}^{1 + 1/\gamma }}}}{{{\varphi ^{1 + 1/\gamma }}\left( {\sigma \left( t \right)} \right){A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}}, \end{array} $

整理后得

$ \begin{array}{l} {w^\Delta }\left( t \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{v^\Delta }\left( t \right) \leqslant - \xi \left( t \right)\varphi \left( t \right) + \frac{{{w^\sigma }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}} \times \\ \;\;\;\;\;\;\;\;\left( {{\varphi ^\Delta }\left( t \right) - \frac{{\varphi \left( t \right)b\left( t \right)}}{{A\left( t \right)}}} \right) - \frac{{\gamma {\tau _0}\varphi \left( t \right)}}{{{A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}}{\left( {\frac{{{w^\sigma }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}} \right)^{1 + 1/\gamma }} - \\ \;\;\;\;\;\;\;\;\frac{{{b_0}\eta \gamma {\tau _0}\varphi \left( t \right)}}{{\tau _0^\gamma {A^{1/\gamma }}\left( {\tau \left( t \right)} \right)}}{\left( {\frac{{{v^\sigma }\left( t \right)}}{{{\varphi ^\sigma }\left( t \right)}}} \right)^{1 + 1/\gamma }} + \frac{{{b_0}\eta {v^\sigma }\left( t \right)}}{{\tau _0^\gamma {\varphi ^\sigma }\left( t \right)}} \times \\ \;\;\;\;\;\;\;\;\left( {{\varphi ^\Delta }\left( t \right) - \frac{{\varphi \left( t \right)b\left( {\tau \left( t \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( t \right)} \right)}}} \right). \end{array} $ (16)

不妨令$\lambda = \frac{{\gamma + 1}}{\gamma }$ , 再利用不等式

$ \lambda A{B^{\lambda - 1}} - {A^\lambda } \leqslant \left( {\lambda - 1} \right){B^\lambda }, $

则式(16)变为

$ \begin{array}{l} {w^\Delta }\left( t \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{v^\Delta }\left( t \right) \leqslant - \xi \left( t \right)\varphi \left( t \right) + \\ \;\;\;\;\;\;\;\;\frac{{A\left( {\tau \left( t \right)} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{{\left( {{\tau _0}\varphi \left( t \right)} \right)}^\gamma }}}{\left( {{\varphi ^\Delta }\left( t \right) - \frac{{\varphi \left( t \right)b\left( t \right)}}{{A\left( t \right)}}} \right)^{\gamma + 1}} + \\ \;\;\;\;\;\;\;\;\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{\left( {{\varphi ^\Delta }\left( t \right) - \frac{{\varphi \left( t \right)b\left( {\tau \left( t \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( t \right)} \right)}}} \right)^{\gamma + 1}}. \end{array} $ (17)

对式(17)两边从t1t(tt1)积分, 有

$ \begin{array}{l} \int_{{t_1}}^t {\left\{ {\xi \left( s \right)\varphi \left( s \right) - \frac{{A\left( {\tau \left( s \right)} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{{\left( {{\tau _0}\varphi \left( s \right)} \right)}^\gamma }}} \times } \right.} \\ \left[ {\frac{{{b_0}\eta }}{{\tau _0^\gamma }} \times {{\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}} \right)}^{\gamma + 1}} + } \right.\\ \left. {\left. {{{\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( s \right)}}{{A\left( s \right)}}} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s \leqslant \\ - \int_{{t_1}}^t {\left[ {{w^\Delta }\left( s \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{v^\Delta }\left( s \right)} \right]} = w\left( {{t_1}} \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}v\left( {{t_1}} \right) - \\ w\left( t \right) - \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{v^\Delta }\left( t \right) \leqslant w\left( {{t_1}} \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}v\left( {{t_1}} \right), \end{array} $ (18)

这与已知矛盾, 故方程(1)是振动的.

注1 选取的φ(t)不同, 则会得到不同的振动准则, 例如, 在定理1中分别取φ(t)=1和φ(t)=t, 就会得到以下推论.

推论1 若

$ \begin{array}{*{20}{c}} {\mathop {\lim \sup }\limits_{t \to \infty } \int_{{t_0}}^t {\left\{ {\xi \left( s \right) - \frac{{A\left( {\tau \left( s \right)} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}\tau _0^\gamma }}\left[ {{{\left( {\frac{{b\left( s \right)}}{{A\left( s \right)}}} \right)}^{\gamma + 1}} + } \right.} \right.} }\\ {\left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {\frac{{b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s = \infty ,} \end{array} $

其中ξ(t)的定义同定理1, 则方程(1)在[t0, ∞)T上是振动的.

推论2 若

$ \begin{array}{*{20}{c}} {\mathop {\lim \sup }\limits_{t \to \infty } \int_{{t_0}}^t {\left\{ {s\xi \left( s \right) - \frac{{A\left( {\tau \left( s \right)} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{{\left( {{\tau _0}s} \right)}^\gamma }}}\left[ {{{\left( {1 - \frac{{sb\left( s \right)}}{{A\left( s \right)}}} \right)}^{\gamma + 1}} + } \right.} \right.} }\\ {\left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {1 - \frac{{sb\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s = \infty ,} \end{array} $

其中ξ(t)的定义如定理1, 则方程(1)在[t0, ∞)T上是振动的.

注2 当γ=1时, 由定理1则可得文献[15]中的定理1.下面给出philos型振动准则.

定理2 考虑集合D≡(t, s)∈T2tst0, 如果存在函数φ(t)∈Crd([t0, ∞)T, R)和H, hCrd(D, R), 使得

$ H\left( {t,t} \right) = 0,t \geqslant {t_0},\;\;\;H\left( {t,s} \right) > 0,t > s \geqslant {t_0}, $ (19)

H关于第二变元s有一非正的Δ偏导数HΔs(t, s), 并满足

$ {H^{\Delta s}}\left( {t,s} \right) + \frac{{H\left( {t,s} \right){\varphi ^\Delta }\left( s \right)}}{{\varphi \left( s \right)}} = - h\left( {t,s} \right){H^{\gamma /\left( {1 + \gamma } \right)}}\left( {t,s} \right), $ (20)

若对充分大的t1, 有

$ \begin{array}{l} \mathop {\lim }\limits_{t \to \infty } \sup \frac{1}{{H\left( {t,{t_1}} \right)}}\int_{{t_1}}^t {\left\{ {\xi \left( s \right)\varphi \left( s \right)H\left( {t,s} \right) - } \right.} \\ \;\;\;\;\;\;\;\;\;\left. {\psi \left( s \right)\left[ {{{\left( {{\varphi _1}\left( s \right)} \right)}^{\gamma + 1}} + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {{\varphi _2}\left( s \right)} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s = \infty , \end{array} $ (21)

其中,

$ {\varphi _1} = {h_ - }\left( {t,s} \right){\varphi ^\sigma }\left( s \right){H^{\gamma /\left( {\gamma + 1} \right)}}\left( {t,s} \right) - \frac{{H\left( {t,s} \right)\varphi \left( s \right)b\left( s \right)}}{{A\left( s \right)}}, $
$ {\varphi _2} = {h_ - }\left( {t,s} \right){\varphi ^\sigma }\left( s \right){H^{\gamma /\left( {\gamma + 1} \right)}}\left( {t,s} \right) - \frac{{H\left( {t,s} \right)\varphi \left( s \right)b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}, $
$ \psi = \frac{{A\left( {\tau \left( s \right)} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}\tau _0^\gamma {\varphi ^\gamma }\left( s \right){{\left( {H\left( {t,s} \right)} \right)}^\gamma }}}, $

则方程(1)在[t0, ∞)T上是振动的.

证明 假设方程(1)在[t0, ∞)T上有一非振动解x(t), 不妨设最终为正, 即存在t1∈[t0, ∞)T, 使得x(t)>0, x(τ(t))>0, x(δ(t))>0, t∈[t1, ∞)T, 则y(t)>0.由定理1的证明得式(16)成立.即

$ \begin{array}{l} \xi \left( s \right)\varphi \left( s \right) \leqslant - {w^\Delta }\left( s \right) - \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{v^\Delta }\left( s \right) - \frac{{\gamma {\tau _0}\varphi \left( s \right)}}{{{A^{1/\gamma }}\left( {\tau \left( s \right)} \right)}} \times \\ \;\;\;\;\;\;\;\;{\left( {\frac{{{w^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)^{1 + 1/\gamma }} + \frac{{{w^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( s \right)}}{{A\left( s \right)}}} \right) + \\ \;\;\;\;\;\;\;\;\frac{{{b_0}\eta }}{{\tau _0^\gamma }}\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}} \right)\frac{{{v^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}} - \\ \;\;\;\;\;\;\;\;\frac{{{b_0}\eta }}{{\tau _0^\gamma }}\frac{{\gamma {\tau _0}\varphi \left( s \right)}}{{{A^{1/\gamma }}\left( {\tau \left( s \right)} \right)}}{\left( {\frac{{{v^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)^{1 + 1/\gamma }}, \end{array} $

上式两边同乘H(t, s), 并从t1t积分, 利用分部积分法得

$ \begin{array}{l} \int_{{t_1}}^t {\xi \left( s \right)\varphi \left( s \right)H\left( {t,s} \right)\Delta s} \leqslant \int_{{t_1}}^t { - {w^\Delta }\left( s \right)H\left( {t,s} \right)\Delta s} - \\ \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\int_{{t_1}}^t {H\left( {t,s} \right){v^\Delta }\left( s \right)\Delta s} + \int_{{t_1}}^t {\left[ {\frac{{{w^\sigma }\left( s \right)H\left( {t,s} \right)}}{{{\varphi ^\sigma }\left( s \right)}} \times } \right.} \\ \left. {\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( s \right)}}{{A\left( s \right)}}} \right)} \right]\Delta s + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\int_{{t_1}}^t {\left[ {\frac{{{v^\sigma }\left( s \right)H\left( {t,s} \right)}}{{{\varphi ^\sigma }\left( s \right)}} \times } \right.} \\ \left. {\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}} \right)} \right]\Delta s - \\ \int_{{t_1}}^t {\left\{ {H\left( {t,s} \right)\left[ {\frac{{\gamma {\tau _0}\varphi \left( s \right)}}{{{A^{1/\gamma }}\left( {\tau \left( s \right)} \right)}}{{\left( {\frac{{{w^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)}^{1 + 1/\gamma }} + } \right.} \right.} \\ \left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}\frac{{\gamma {\tau _0}\varphi \left( s \right)}}{{{A^{1/\gamma }}\left( {\tau \left( s \right)} \right)}}{{\left( {\frac{{{v^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)}^{1 + 1/\gamma }}} \right]} \right\}\Delta s = H\left( {t,{t_1}} \right)w\left( {{t_1}} \right) + \\ \frac{{{b_0}\eta }}{{\tau _0^\gamma }}H\left( {t,{t_1}} \right)v\left( {{t_1}} \right) + \int_{{t_1}}^t {{w^\sigma }\left( s \right){H^{\Delta s}}\left( {t,s} \right)\Delta s} + \\ \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\int_{{t_1}}^t {{H^{\Delta s}}\left( {t,s} \right){v^\sigma }\left( s \right)\Delta s} + \\ \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\int_{{t_1}}^t {\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}} \right)\frac{{{v^\sigma }\left( s \right)H\left( {t,s} \right)}}{{{\varphi ^\sigma }\left( s \right)}}\Delta s} + \\ \int_{{t_1}}^t {\frac{{{w^\sigma }\left( s \right)H\left( {t,s} \right)}}{{{\varphi ^\sigma }\left( s \right)}}\left( {{\varphi ^\Delta }\left( s \right) - \frac{{\varphi \left( s \right)b\left( s \right)}}{{A\left( s \right)}}} \right)\Delta s} - \\ \int_{{t_1}}^t {\left\{ {H\left( {t,s} \right) \times \frac{{\gamma {\tau _0}\varphi \left( s \right)}}{{{A^{1/\gamma }}\left( {\tau \left( s \right)} \right)}}\left[ {{{\left( {\frac{{{w^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)}^{1 + 1/\gamma }} + } \right.} \right.} \\ \left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {\frac{{{v^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)}^{1 + 1/\gamma }}} \right]} \right\}\Delta s \leqslant \\ H\left( {t,{t_1}} \right)w\left( {{t_1}} \right) + \int_{{t_1}}^t {\left\{ {\left( {{h_ - }\left( {t,s} \right){\varphi ^\sigma }\left( s \right){{\left( {H\left( {t,s} \right)} \right)}^{\gamma /\left( {\gamma + 1} \right)}}} \right) + } \right.} \\ \left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}\left( {H\left( {t,{t_1}} \right)v\left( {{t_1}} \right) - \frac{{H\left( {t,s} \right)\varphi \left( s \right)b\left( s \right)}}{{A\left( s \right)}}} \right)\frac{{{w^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right\}\Delta s\\ \frac{{{b_0}\eta }}{{\tau _0^\gamma }}\int_{{t_1}}^t {\left\{ {\frac{{{v^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}\left( {{h_ - }\left( {t,s} \right){\varphi ^\sigma }\left( s \right){{\left( {H\left( {t,s} \right)} \right)}^{\gamma /\left( {\gamma + 1} \right)}} - } \right.} \right.} \\ \left. {\left. {\frac{{H\left( {t,s} \right)\varphi \left( s \right)b\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}A\left( {\tau \left( s \right)} \right)}}} \right)} \right\}\Delta s - \\ \int_{{t_1}}^t {\left\{ {H\left( {t,s} \right)\left[ {\frac{{\gamma {\tau _0}\varphi \left( s \right)}}{{{A^{1/\gamma }}\left( {\tau \left( s \right)} \right)}}{{\left( {\frac{{{w^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)}^{1 + 1/\gamma }} + } \right.} \right.} \\ \left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}\frac{{\gamma {\tau _0}\varphi \left( s \right)}}{{{A^{1/\gamma }}\left( {\tau \left( s \right)} \right)}}{{\left( {\frac{{{v^\sigma }\left( s \right)}}{{{\varphi ^\sigma }\left( s \right)}}} \right)}^{1 + 1/\gamma }}} \right]} \right\}\Delta s, \end{array} $

再利用不等式λABλ-1-Aλ≤(λ-1)Bλ, 得

$ \begin{array}{l} \int_{{t_1}}^t {\xi \left( s \right)\varphi \left( s \right)H\left( {t,s} \right)\Delta s} \leqslant \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;H\left( {t,{t_1}} \right)w\left( {{t_1}} \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}H\left( {t,{t_1}} \right)v\left( {{t_1}} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\int_{{t_1}}^t {\left\{ {\psi \left( s \right)\left[ {{{\left( {{\varphi _1}\left( s \right)} \right)}^{\gamma + 1}} + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {{\varphi _2}\left( s \right)} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s} , \end{array} $

$ \begin{array}{l} \frac{1}{{H\left( {t,{t_1}} \right)}}\int_{{t_1}}^t {\left\{ {\xi \left( s \right)\varphi \left( s \right)H\left( {t,s} \right) - \psi \left( s \right)\left[ {{{\left( {{\varphi _1}\left( s \right)} \right)}^{\gamma + 1}} + } \right.} \right.} \\ \;\;\;\;\;\left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {{\varphi _2}\left( s \right)} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s \leqslant w\left( {{t_1}} \right) + \frac{{{b_0}\eta }}{{\tau _0^\gamma }}v\left( {{t_1}} \right). \end{array} $

与式(21)矛盾, 故方程(1)的解是振动的.

注3 选择不同的H(t, s)及φ(t), 就会得到不同的振动准则; 同时当γ=1时得到了文献[15]中的定理2.

显然, 本文给出了一类新的具有阻尼项的二阶非线性时滞中立型动力方程的振动性, 改进并推广了文献[15]的相关结果.

2 例子

例1考虑下列非线性二阶动力方程

$ \begin{array}{l} {\left[ {{{\left( {{{\left( {x\left( t \right) + \left( {2 + \cos t} \right)g\left( {x\left( {\frac{t}{2}} \right)} \right)} \right)}^\Delta }} \right)}^\gamma }} \right]^\Delta } + \frac{1}{{{t^{5/2}}}} \times \\ {x^\gamma }\left( {\frac{t}{2}} \right) + \frac{1}{{{t^2}}}{\left( {{{\left( {x\left( t \right) + \left( {2 + \cos t} \right)g\left( {x\left( {\frac{t}{2}} \right)} \right)} \right)}^\Delta }} \right)^\gamma } = 0, \end{array} $

T=2Z的振动性.

  显然, 上述方程是具有非线性的二阶2-差分方程, 其中, tt0=2, B(t)=2+cos t, A(t)=1, $\delta (t) = \tau (t) = \frac{t}{2}$ , $b(t) = \frac{1}{{{t^{5/2}}}}, $ , $p(t) = \frac{7}{{{t^2}}}, $ , $g(u) = \frac{u}{{\sqrt {1 + si{n^2}\left({u + 1} \right)} }}, $ , $\delta (t) = \tau (t) = \frac{t}{2} \leqslant t$ 并且limt→∞ δ(t)=$\mathop {{\rm{lim}}}\limits_{t \to \infty } \delta (t) = \mathop {{\rm{lim}}}\limits_{t \to \infty } \tau (t) = \infty $ , τ是严格递增的且

$ \begin{array}{*{20}{c}} {{\tau ^\Delta }\left( t \right) = \frac{1}{2} > 0,0 < B\left( t \right) \leqslant 3 = {b_0} < \infty ,}\\ {\frac{{g\left( u \right)}}{u} = \frac{1}{{\sqrt {1 + {{\sin }^2}\left( {u + 1} \right)} }} \leqslant 1 = \eta .} \end{array} $

因为$1-\mu (t)\frac{{b(t)}}{{A(t)}} = 1-t\cdot\frac{1}{{{t^{5/2}}}} > 0$ , 则$\frac{{-b}}{A}$R +,

$ \begin{array}{*{20}{c}} {{e_{ - b/A}}\left( {s,{t_0}} \right) \geqslant 1 - \int_2^t {\frac{{b\left( s \right)}}{{A\left( s \right)}}\Delta s} = 1 - \int_2^t {{s^{ - 5/2}}\Delta s} = 1 - }\\ {\frac{{{t^{ - 3/2}} - {2^{ - 3/2}}}}{{{2^{ - 3/2}} - 1}} \geqslant {t^{ - 3/2}} - {2^{ - 1/2}} + 1 \geqslant \frac{1}{4},} \end{array} $

$\int_{{t_0}}^{^{ + \infty }} {{{\left({\frac{{{e_{-b/A}}(s, {t_0})}}{{A\left(s \right)}}} \right)}^{1/\gamma }}\Delta s \geqslant \int_{{t_0}}^{^{ + \infty }} {{{\left({\frac{1}{4}} \right)}^{1/\gamma }}\Delta s = \infty } } $ .

满足(H1)~(H6),再根据ξ(t)的定义, 得ξ(t)=$\frac{7}{{{t^2}}}$ , 且

$ \begin{array}{l} \mathop {\lim \sup }\limits_{t \to \infty } \int_{{t_0}}^t {\left\{ {s\xi \left( s \right) - \frac{{A\left( {\tau \left( s \right)} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{{\left( {{\tau _0}s} \right)}^\gamma }}}\left[ {{{\left( {1 - \frac{{sb\left( s \right)}}{{{A^\sigma }\left( s \right)}}} \right)}^{\gamma + 1}} + } \right.} \right.} \\ \left. {\left. {\frac{{{b_0}\eta }}{{\tau _0^\gamma }}{{\left( {1 - \frac{{sb\left( {\tau \left( s \right)} \right)}}{{\tau _0^{ - 1}{A^\sigma }\left( {\tau \left( s \right)} \right)}}} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s = \\ \mathop {\lim \sup }\limits_{t \to \infty } \int_{{t_0}}^t {\left\{ {\frac{7}{s} - \frac{{{2^\gamma }}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{s^\gamma }}}\left[ {{{\left( {1 - {s^{ - 3/2}}} \right)}^{\gamma + 1}} + } \right.} \right.} \\ \left. {\left. {3 \times {2^\gamma }{{\left( {1 - {2^{3/2}}{s^{ - 3/2}}} \right)}^{\gamma + 1}}} \right]} \right\}\Delta s \geqslant \\ \mathop {\lim \sup }\limits_{t \to \infty } \int_{{t_0}}^t {\left\{ {\frac{7}{s} - \frac{{{2^\gamma }\left( {1 + 3 \times {2^\gamma }} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{s^\gamma }}}{{\left( {1 - {2^{3/2}}{s^{ - 3/2}}} \right)}^{\gamma + 1}}} \right\}\Delta s} \geqslant \\ \mathop {\lim \sup }\limits_{t \to \infty } \int_{{t_0}}^t {\left\{ {\frac{7}{s} - \frac{{{2^\gamma }\left( {1 + 3 \times {2^\gamma }} \right)}}{{{{\left( {\gamma + 1} \right)}^{\gamma + 1}}{s^\gamma }}}} \right\}\Delta s} = \infty . \end{array} $

由推论2可知该方程的解是振动的.

3 结论

基于时间尺度上的微积分理论、Riccati变换、H函数法和不等式技巧, 并利用假设和引理讨论了时间尺度上一类新的具有阻尼项的二阶非线性时滞中立型动力方程的振动性, 得到该方程的4个振动准则.特别地, 当γ=1时, 本文结果便是文献[15]的相关结果, 因此在理论上是对文献[15]的推广; 同时, 本文首次研究了方程(1)的振动性, 丰富了二阶时滞动力方程的振动结果.

参考文献
[1] HILGER S. Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannig faltigkeiten[D]. Würzburg: Universität Würzburg, 1988.
[2] HILGER S. Analysis on measure chains-A unified approach to continuous and discrete calculus[J]. Results Math, 1990, 18(1/2): 18–56.
[3] BOHNER M, SAKER S H. Oscillation of second-order nonlinear dynamic equations on time scales[J]. The Rocky Mountain Journal of Mathematics, 2004, 34(4): 1239–1254. DOI:10.1216/rmjm/1181069797
[4] HASSAN T S. Oscillation for half-linear dynamic equations on time scales[J]. Journal of Mathematical Analysis and Applications, 2008, 345(1): 176–185. DOI:10.1016/j.jmaa.2008.04.019
[5] YANG J S. Oscillation of second-order nonlinear dynamic equation on time scales[J]. Chinese Quarterly Journal of Mathematics, 2013, 28(2): 172–179.
[6] DENG X H, WANG Q R, ZHOU Z. Oscillation criteria for second order nonlinear delay dynamic equations on time scales[J]. Applied Mathematics & Computation, 2015, 269(5): 834–840.
[7] YANG J S, QIN X W. Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales[J]. Advances in Difference Equations, 2015(1): 1–16.
[8] ZHANG Q X, LI G. New oscillation criteria of second-order nonlinear delay dynamic equations on time scales[J]. Applied Mathematics, 2014, 37(8): 2342–2348.
[9] ZHANG Q X, SONG X. On the oscillation for second-order half-linear neutral delay dynamic equations on time scales[J]. Abstract & Applied Analysis, 2014: 321764.
[10] ZHANG C H, AGARWAL R P, BOHNER M, et al. New oscillation results for second-order neutral delay dynamic equations[J]. Advances in Difference Equations, 2012, 2012: 227. DOI:10.1186/1687-1847-2012-227
[11] SAKER S H. Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type[J]. Advances in Dynamical Systems & Applications, 2006, 15(2): 629–644.
[12] SAKER S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales[J]. Journal of Computational and Applied Mathematics, 2006, 187(2): 123–141. DOI:10.1016/j.cam.2005.03.039
[13] ŞAHÍNER Y. Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales[J]. Advances in Difference Equations, 2006(1): 1–9.
[14] 莫协强, 杨甲山. 时间测度链上一类二阶动力方程的振动结果[J]. 中国科技论文, 2015, 10(5): 564–569.
MO X Q, YANG J S. Oscillation of a class of second order dynamic equations on time scales[J]. Chinese Science Papers, 2015, 10(5): 564–569.
[15] 杨甲山, 谭伟明, 覃学文, 等. 时间模上二阶非线性阻尼动力方程的振动性分析[J]. 浙江大学学报(理学版), 2016, 43(1): 64–70.
YANG J S, TAN W M, QIN X W, et al. Oscillation of second order nonlinear damped dynamic equations on time scales[J]. Journal of Zhejiang University(Science Edition), 2016, 43(1): 64–70. DOI:10.3785/j.issn.1008-9497.2016.01.011
[16] LI T X, HAN Z L, SUN S R, et al. Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales[J]. Advances in Difference Equations, 2009(1): 1–10.
[17] LI T X, HAN Z L, ZHANG C H, et al. On the oscillation of second-order Emden-Fowler neutral differential equations[J]. Journal of Applied Mathematics and Computing, 2011, 37(1): 601–610.
[18] SUN S R, LI T X, HAN Z L, et al. Oscillation of second-order neutral functional differential equations with mixed nonlinearities[J]. Abstract & Applied Analysis, 2011(2): 243–252.