Abstract:By means of the Riccati transform, H function method and inequality technique, We studied a new class of second-order nonlinear neutral dynamic equations with damping term on time scales for the first time. Some new sufficient conditions for the oscillation of the equation are obtained, which improve the conclusions of the previous literature and enrich the oscillation of second order delay dynamic equations. Finally, the results are verified by examples.
[1] HILGER S. Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannig faltigkeiten[D]. Würzburg:Universität Würzburg, 1988.
[2] HILGER S. Analysis on measure chains-A unified approach to continuous and discrete calculus[J]. Results Math, 1990, 18(1/2):18-56.
[3] BOHNER M, SAKER S H. Oscillation of second-order nonlinear dynamic equations on time scales[J].The Rocky Mountain Journal of Mathematics, 2004, 34(4):1239-1254.
[4] HASSAN T S. Oscillation for half-linear dynamic equations on time scales[J]. Journal of Mathematical Analysis and Applications, 2008, 345(1):176-185.
[5] YANG J S. Oscillation of second-order nonlinear dynamic equation on time scales[J]. Chinese Quarterly Journal of Mathematics, 2013, 28(2):172-179.
[6] DENG X H, WANG Q R, ZHOU Z. Oscillation criteria for second order nonlinear delay dynamic equations on time scales[J]. Applied Mathematics & Computation, 2015, 269(5):834-840.
[7] YANG J S, QIN X W. Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales[J]. Advances in Difference Equations, 2015(1):1-16.
[8] ZHANG Q X, LI G. New oscillation criteria of second-order nonlinear delay dynamic equations on time scales[J]. Applied Mathematics, 2014, 37(8):2342-2348.
[9] ZHANG Q X, SONG X. On the oscillation for second-order half-linear neutral delay dynamic equations on time scales[J]. Abstract & Applied Analysis, 2014:321764.
[10] ZHANG C H, AGARWAL R P, BOHNER M, et al. New oscillation results for second-order neutral delay dynamic equations[J]. Advances in Difference Equations, 2012, 2012:227. http://doi.org.org/10.1186/1687-1847-2012-227.
[11] SAKER S H. Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type[J].Advances in Dynamical Systems & Applications, 2006, 15(2):629-644.
[12] SAKER S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales[J].Journal of Computational and Applied Mathematics, 2006, 187(2):123-141.
[13] SAHÍNER Y. Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales[J].Advances in Difference Equations, 2006(1):1-9.
[14] 莫协强, 杨甲山. 时间测度链上一类二阶动力方程的振动结果[J].中国科技论文, 2015, 10(5):564-569. MO X Q, YANG J S. Oscillation of a class of second order dynamic equations on time scales[J].Chinese Science Papers, 2015, 10(5):564-569.
[15] 杨甲山, 谭伟明, 覃学文, 等. 时间模上二阶非线性阻尼动力方程的振动性分析[J].浙江大学学报(理学版), 2016, 43(1):64-70. YANG J S, TAN W M, QIN X W, et al. Oscillation of second order nonlinear damped dynamic equations on time scales[J].Journal of Zhejiang University(Science Edition), 2016, 43(1):64-70.
[16] LI T X, HAN Z L, SUN S R, et al. Existence of nonoscillatory solutions to second-order neutral delay dynamic equations on time scales[J].Advances in Difference Equations, 2009(1):1-10.
[17] LI T X, HAN Z L, ZHANG C H, et al. On the oscillation of second-order Emden-Fowler neutral differential equations[J].Journal of Applied Mathematics and Computing, 2011, 37(1):601-610.
[18] SUN S R, LI T X, HAN Z L, et al. Oscillation of second-order neutral functional differential equations with mixed nonlinearities[J].Abstract & Applied Analysis, 2011(2):243-252.