文章快速检索     高级检索
  浙江大学学报(理学版)  2017, Vol. 44 Issue (5): 526-530  DOI:10.3785/j.issn.1008-9497.2017.05.005
0

引用本文 [复制中英文]

徐会作, 钱伟茂. Toader-Qi平均与其他二元平均的几个确界[J]. 浙江大学学报(理学版), 2017, 44(5): 526-530. DOI: 10.3785/j.issn.1008-9497.2017.05.005.
[复制中文]
XU Huizuo, QIAN Weimao. Some sharp bounds for Toader-Qi mean of other bivariate means[J]. Journal of Zhejiang University(Science Edition), 2017, 44(5): 526-530. DOI: 10.3785/j.issn.1008-9497.2017.05.005.
[复制英文]

基金项目

浙江广播电视大学科研课题(XKT-15G17)

作者简介

徐会作(1978-), http://orcid.org/0000-0002-9989-2672, 男, 讲师, 硕士, 主要从事平均值不等式研究, E-mail:21888878@qq.com

文章历史

收稿日期:2016-11-02
Toader-Qi平均与其他二元平均的几个确界
徐会作1 , 钱伟茂2     
1. 温州广播电视大学 经管学院, 浙江 温州 325000;
2. 湖州广播电视大学 远程教育学院, 浙江 湖州 313000
摘要: 研究了Toader-Qi平均TQab)关于几何平均Gab)、对数平均Lab)、算术平均Aab)和二次平均Qab)若干特殊组合的序关系.运用实分析方法以及第1类Bessel函数的乘积公式,建立若干重要引理,导出了4个关于Toader-Qi平均TQ(ab)的精确不等式,并获得了特殊情形的结果.
关键词: Toader-Qi平均    几何平均    对数平均    算术平均    二次平均    
Some sharp bounds for Toader-Qi mean of other bivariate means
XU Huizuo1 , QIAN Weimao2     
1. School of Economics and Management, Wenzhou Broadcast and TV University, Wenzhou 325000, Zhejiang Province, China;
2. School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, Zhejiang Province, China
Abstract: This paper study the order relation of some special combinations of geometric mean G(a, b), logarithmic mean L(a, b), arithmetic mean A(a, b) and quadratic mean Q(a, b) for Toader-Qi mean TQ(a, b). By using the method of real analysis in mathematics and the product formula of the first kind Bessel function, several important lemma are established, and four optimal inequalities for Toader-Qi mean TQ(a, b) are found. The results of particular cases are also presented.
Key words: Toader-Qi mean    geometric mean    logarithmic mean    arithmetic mean    quadratic mean    
0 引言

a, b>0和ab, 则几何平均G(a, b)、指数平均I(a, b)、对数平均L(a, b)、算术平均A(a, b)、二次平均Q(a, b)和Toader-Qi平均TQ(a, b)[1-3]分别为

$ \begin{array}{l} G\left( {a,b} \right) = \sqrt {ab} ,I\left( {a,b} \right) = {\left( {{a^a}/{b^b}} \right)^{1/\left( {a - b} \right)}}/e,\\ L\left( {a,b} \right) = \frac{{a - b}}{{\log a - \log b}},A\left( {a,b} \right) = \frac{{a + b}}{2},\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;Q\left( {a,b} \right) = \sqrt {\frac{{{a^2} + {b^2}}}{2}} , \end{array} $ (1)
$ {\rm{TQ}}\left( {a,b} \right)\frac{2}{{\rm{\pi }}}\int_0^{{\rm{\pi }}/2} {{a^{{{\cos }^2}\theta }}{b^{{{\sin }^2}\theta }}{\rm{d}}\theta } . $ (2)

近年来, 关于若干经典平均与Toader-Qi平均的比较受到了关注, 得到了一定的研究, 有关Toader-Qi平均的重要不等式可参阅文献[2-7].QI等[2]证明了

$ {\rm{TQ}}\left( {a,b} \right) = \sqrt {ab} {I_0}\left( {\frac{1}{2}\log \frac{b}{a}} \right) $ (3)

和不等式

$ \begin{array}{*{20}{c}} {L\left( {a,b} \right) < {\rm{TQ}}\left( {a,b} \right) < \frac{{A\left( {a,b} \right) + G\left( {a,b} \right)}}{2} < }\\ {\frac{{2A\left( {a,b} \right) + G\left( {a,b} \right)}}{3} < I\left( {a,b} \right)} \end{array} $

对所有a, b>0和ab成立, 并且

$ {I_0}\left( t \right) = \sum\limits_{n = 0}^\infty {\frac{{{t^{2n}}}}{{{2^{2n}}{{\left( {n!} \right)}^2}}}} $ (4)

是第1类改进Bessel函数[8].

YANG等[4]证明了

$ \frac{a}{{1 + \log \left( {a/b} \right)}} < {\rm{TQ}}\left( {a,b} \right) < \frac{a}{{\sqrt {1 + \log \left( {a/b} \right)} }} $

对所有a>b>0成立, 并且

$ \begin{array}{l} {\alpha _1}\sqrt {L\left( {a,b} \right)A\left( {a,b} \right)} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;{\beta _1}\sqrt {L\left( {a,b} \right)A\left( {a,b} \right)} , \end{array} $
$ \begin{array}{l} {L^{{\alpha _2}}}\left( {a,b} \right){A^{1 - {\alpha _2}}}\left( {a,b} \right) < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;{\beta _2}L\left( {a,b} \right) + \left( {1 - {\beta _2}} \right)A\left( {a,b} \right) \end{array} $

对所有a, b>0和ab成立当且仅当α1$\sqrt{2/\text{ }\!\!\pi\!\!\text{ }}$, β1≥1, α2≥3/4和β2≤3/4.

由文献[6], 推得精确不等式

$ {\rm{TQ}}\left( {a,b} \right) > {L_{3/2}}\left( {a,b} \right) $

对所有a>b>0成立.其中Lp(a, b)=[(ap-bp)/p(log a-log b)]1/p(p≠0) 和L0(a, b)=$\mathop {\lim }\limits_{p \to 0} {\mkern 1mu} $ Lp(a, b)=$\sqrt{ab}$p阶对数平均.

a>b>0,t=(log a-log b)/2>0, 则由式(1) 可推得

$ \left\{ \begin{array}{l} L\left( {a,b} \right) = \sqrt {ab} \frac{{\sinh \left( t \right)}}{t},\\ A\left( {a,b} \right) = \sqrt {ab} \cosh \left( t \right),\\ Q\left( {a,b} \right) = \sqrt {ab} {\cosh ^{1/2}}\left( {2t} \right). \end{array} \right. $ (5)

由式(2) 和(3) 可推得

$ {\rm{TQ}}\left( {a,b} \right) = \sqrt {ab} {I_0}\left( t \right). $ (6)

本文的主要目的是给出以下几个关于Toader-Qi平均与几何平均G(a, b)、对数平均L(a, b)、算术平均A(a, b)和二次平均Q(a, b)特殊组合的精确不等式:

$ \begin{array}{l} \frac{{{\alpha _1}{Q^2}\left( {a,b} \right) + \left( {1 - {\alpha _1}} \right){G^2}\left( {a,b} \right)}}{{G\left( {a,b} \right)}} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;\frac{{{\beta _1}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _1}} \right){G^2}\left( {a,b} \right)}}{{G\left( {a,b} \right)}}, \end{array} $
$ \begin{array}{l} \frac{{{\alpha _2}{Q^2}\left( {a,b} \right) + \left( {1 - {\alpha _2}} \right){G^2}\left( {a,b} \right)}}{{L\left( {a,b} \right)}} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;\frac{{{\beta _2}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _2}} \right){G^2}\left( {a,b} \right)}}{{L\left( {a,b} \right)}}, \end{array} $
$ \begin{array}{l} \frac{{{\alpha _3}{Q^2}\left( {a,b} \right) + \left( {1 - {\alpha _3}} \right){G^2}\left( {a,b} \right)}}{{A\left( {a,b} \right)}} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;\frac{{{\beta _3}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _3}} \right){G^2}\left( {a,b} \right)}}{{A\left( {a,b} \right)}}, \end{array} $
$ \begin{array}{l} \sqrt {{\alpha _4}{Q^2}\left( {a,b} \right) + \left( {1 - {\alpha _4}} \right){G^2}\left( {a,b} \right)} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;\;\sqrt {{\beta _4}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _4}} \right){G^2}\left( {a,b} \right)} \end{array} $

对所有a, b>0和ab成立.

1 预备知识和引理

为了证明主要结果, 本节给出一些经典Gamma函数、第1类Bessel函数的基本知识和相关引理.

x>0, $\Gamma \left( x \right)=\int_{0}^{\infty }{{{\text{e}}^{-t}}{{t}^{x-1}}\text{d}t}$是经典Gamma函数.则Γ(x)满足下列公式(见文献[9], p33引理2.4 (1) (3), p46练习2.46,4 (b)):

$ \Gamma \left( {1/2} \right) = \sqrt {\rm{\pi }} ,\Gamma \left( {3/2} \right) = \sqrt {\rm{\pi }} /2, $
$ \Gamma \left( {n + 1} \right) = n\Gamma \left( n \right) = n!, $
$ \Gamma \left( {n + \frac{1}{2}} \right) = \frac{{\left( {2n} \right)!}}{{{2^{2n}}n!}}\sqrt {\rm{\pi }} , $
$ \Gamma \left( {n + \frac{3}{2}} \right) = \frac{{\left( {2n + 2} \right)!}}{{{2^{2n + 2}}\left( {n + 1} \right)!}}\sqrt {\rm{\pi }} , $

对所有正整数n成立.

v>-1, 第1类修正Bessel函数Iv(t)定义(见文献[10], p77) 为

$ {I_v}\left( t \right) = \sum\limits_{n = 0}^\infty {\frac{1}{{n!\Gamma \left( {v + n + 1} \right)}}{{\left( {\frac{t}{2}} \right)}^{2n + v}}} . $ (7)

注意到在特殊情形下有:

$ cosh\left( t \right) = \sqrt {\rm{\pi }} {\left( {t/2} \right)^{1/2}}{I_{ - 1/2}}\left( t \right), $ (8)
$ \sinh \left( t \right) = \sqrt {\rm{\pi }} {\left( {t/2} \right)^{1/2}}{I_{1/2}}\left( t \right). $ (9)

引理1[11]  假设幂级数$f\left( x \right)=\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n}}}$$g\left( x \right)=\sum\limits_{n=0}^{\infty }{{{b}_{n}}{{x}^{n}}}$对所有的n∈{0, 1, 2, …}的收敛半径r>0且an, bn>0.设h(x)=f(x)/g(x), 如果序列{an/bn}n=0是(严格)上升(下降)的, 则h(x)在(0, r)内也(严格)上升(下降).

引理2(见文献[3], 引理2.8)  设I0(t)定义为式(4).则等式

$ I_0^2\left( t \right) = \sum\limits_{n = 0}^\infty {\frac{{\left( {2n} \right)!}}{{{2^{2n}}{{\left( {n!} \right)}^4}}}{t^{2n}}} $

对所有tR成立.

引理3  等式

$ \cosh \left( t \right){I_0}\left( t \right) = \sum\limits_{n = 0}^\infty {\frac{{\left( {4n} \right)!}}{{{2^{2n}}{{\left[ {\left( {2n} \right)!} \right]}^3}}}{t^{2n}}} $ (A)

$ \sinh \left( t \right){I_0}\left( t \right) = \sum\limits_{n = 0}^\infty {\frac{{\left( {4n + 2} \right)!}}{{{2^{2n + 1}}{{\left[ {\left( {2n + 1} \right)!} \right]}^3}}}{t^{2n + 1}}} $ (B)

对所有tR成立.

证明   (A)由式(8) 和Cauchy乘积公式(见文献[12], (3.5))

$ \begin{array}{l} {I_\lambda }\left( t \right){I_\mu }\left( t \right) = \sum\limits_{n = 0}^\infty {\left( {\begin{array}{*{20}{c}} {2n + \lambda + \mu }\\ n \end{array}} \right){C_{\lambda ,n}}{C_{\mu ,n}}{{\left( {t/2} \right)}^{2n + \lambda + \mu }}} ,\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{C_{\lambda ,n}} = \frac{1}{{\Gamma \left( {n + \lambda + 1} \right)}}, \end{array} $

对所有tR, 有

$ \begin{array}{l} cosh\left( t \right){I_0}\left( t \right) = \sqrt {\rm{\pi }} {\left( {t/2} \right)^{1/2}}{I_{ - 1/2}}\left( t \right){I_0}\left( t \right) = \\ \sqrt {\rm{\pi }} {\left( {t/2} \right)^{1/2}}\sum\limits_{n = 0}^\infty {\frac{{\Gamma \left( {2n + 1/2} \right)}}{{n!{\Gamma ^2}\left( {n + 1/2} \right)\Gamma \left( {n + 1} \right)}}{{\left( {t/2} \right)}^{2n - 1/2}}} = \\ \sqrt {\rm{\pi }} \sum\limits_{n = 0}^\infty {\frac{{\Gamma \left( {2n + 1/2} \right)}}{{{{\left( {n!} \right)}^2}{\Gamma ^2}\left( {n + 1/2} \right)}}{{\left( {t/2} \right)}^{2n}}} = \\ \sum\limits_{n = 0}^\infty {\frac{{\left( {4n} \right)!}}{{{2^{2n}}{{\left[ {\left( {2n} \right)!} \right]}^3}}}{t^{2n}}} . \end{array} $

(B)由式(9) 和Cauchy乘积公式(见文献[12], (3.5))

$ \begin{array}{*{20}{c}} {{I_\lambda }\left( t \right){I_\mu }\left( t \right) = \sum\limits_{n = 0}^\infty {\left( {\begin{array}{*{20}{c}} {2n + \lambda + \mu }\\ n \end{array}} \right){C_{\lambda ,n}}{C_{\mu ,n}}{{\left( {t/2} \right)}^{2n + \lambda + \mu }}} ,}\\ {{C_{\lambda ,n}} = \frac{1}{{\Gamma \left( {n + \lambda + 1} \right)}},} \end{array} $

对所有tR, 有

$ \begin{array}{l} \sinh \left( t \right){I_0}\left( t \right) = \sqrt {\rm{\pi }} {\left( {t/2} \right)^{1/2}}{I_{1/2}}\left( t \right){I_0}\left( t \right) = \\ \sqrt {\rm{\pi }} {\left( {t/2} \right)^{1/2}}\sum\limits_{n = 0}^\infty {\frac{{\Gamma \left( {2n + 3/2} \right)}}{{n!{\Gamma ^2}\left( {n + 3/2} \right)\Gamma \left( {n + 1} \right)}}{{\left( {t/2} \right)}^{2n + 1/2}}} = \\ \sqrt {\rm{\pi }} \sum\limits_{n = 0}^\infty {\frac{{\Gamma \left( {2n + 3/2} \right)}}{{{{\left( {n!} \right)}^2}{\Gamma ^2}\left( {n + 3/2} \right)}}{{\left( {t/2} \right)}^{2n + 1}}} = \\ \sum\limits_{n = 0}^\infty {\frac{{\left( {4n + 2} \right)!}}{{{2^{2n + 1}}{{\left[ {\left( {2n + 1} \right)!} \right]}^3}}}{t^{2n + 1}}} . \end{array} $

引理4  函数$f\left( t \right)=\frac{{{I}_{0}}\left( t \right)-1}{\cosh \left( 2t \right)-1}$在(0, ∞)内严格单调下降.

证明  由式(4) 得

$ \begin{array}{l} f\left( t \right) = \frac{{\sum\limits_{n = 0}^\infty {\frac{{{t^{2n}}}}{{{2^{2n}}{{\left( {n!} \right)}^2}}} - 1} }}{{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n}} - 1} }} = \frac{{\sum\limits_{n = 1}^\infty {\frac{1}{{{2^{2n}}{{\left( {n!} \right)}^2}}}{t^{2n}}} }}{{\sum\limits_{n = 1}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n}}} }} = \\ \;\;\;\;\;\;\;\;\;\;\;\frac{{\sum\limits_{n = 0}^\infty {\frac{1}{{{2^{2n + 2}}\left[ {\left( {n + 1} \right)!} \right]}}{t^{2n + 2}}} }}{{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}}} {t^{2n + 2}}}} = \frac{{\sum\limits_{n = 0}^\infty {{a_n}{t^{2n}}} }}{{\sum\limits_{n = 0}^\infty {{b_n}{t^{2n}}} }}, \end{array} $ (10)

其中,

$ {a_n} = \frac{1}{{{2^{2n + 2}}{{\left[ {\left( {n + 1} \right)!} \right]}^2}}} > 0,{b_n} = \frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}} > 0. $ (11)

经简单计算得到

$ \begin{array}{l} \frac{{{a_{n + 1}}}}{{{b_{n + 1}}}} - \frac{{{a_n}}}{{{b_n}}} = \frac{{\left( {2n + 4} \right)!}}{{{2^{4n + 8}}{{\left[ {\left( {n + 2} \right)!} \right]}^2}}} - \frac{{\left( {2n + 2} \right)!}}{{{2^{4n + 4}}{{\left[ {\left( {n + 1} \right)!} \right]}^2}}} = \\ \;\;\;\;\;\;\; - \frac{{\left( {n + 2} \right)\left( {6n + 13} \right)\left( {2n + 2} \right)!}}{{{2^{4n + 7}}{{\left[ {\left( {n + 2} \right)!} \right]}^2}}} < 0. \end{array} $ (12)

从不等式(11) 和(12) 中可清楚地看到序列{an/bn}0对所有n≥0是严格单调下降的.所以, 由引理1和式(10) 协同序列{an/bn}0的单调性可容易地得到引理4.

引理5  函数$g\left( t \right)=\frac{\sinh \left( t \right){{I}_{0}}\left( t \right)-1}{t\left[\cosh \left( 2t \right)-1 \right]}$在(0, ∞)内严格单调下降.

证明  由引理3(B)得到

$ \begin{array}{l} g\left( t \right) = \frac{{\sum\limits_{n = 0}^\infty {\frac{{\left( {4n + 2} \right)!}}{{{2^{2n + 1}}{{\left[ {\left( {2n + 1} \right)!} \right]}^3}}}{t^{2n + 1}} - t} }}{{t\sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n}} - t} }} = \\ \;\;\;\;\;\;\;\;\;\;\frac{{\sum\limits_{n = 1}^\infty {\frac{{\left( {4n + 2} \right)!}}{{{2^{2n + 1}}{{\left[ {\left( {2n + 1} \right)!} \right]}^3}}}{t^{2n + 1}}} }}{{\sum\limits_{n = 1}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n + 1}}} }} = \\ \;\;\;\;\;\;\;\;\;\;\frac{{\sum\limits_{n = 0}^\infty {\frac{{\left( {4n + 6} \right)!}}{{{2^{2n + 3}}{{\left[ {\left( {2n + 3} \right)!} \right]}^3}}}{t^{2n + 3}}} }}{{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}}{t^{2n + 3}}} }} = \frac{{\sum\limits_{n = 0}^\infty {{c_n}{t^{2n}}} }}{{\sum\limits_{n = 0}^\infty {{d_n}{t^{2n}}} }}, \end{array} $ (13)

其中,

$ {c_n} = \frac{{\left( {4n + 6} \right)!}}{{{2^{2n + 3}}{{\left[ {\left( {2n + 3} \right)!} \right]}^3}}} > 0,{d_n} = \frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}} > 0. $ (14)

经简单计算得到

$ \begin{array}{l} \frac{{{c_{n + 1}}}}{{{d_{n + 1}}}} - \frac{{{c_n}}}{{{d_n}}} = \frac{{\left( {4n + 10} \right)!}}{{{2^{4n + 9}}{{\left[ {\left( {2n + 5} \right)!} \right]}^2}}} - \frac{{\left( {4n + 6} \right)!}}{{{2^{4n + 5}}{{\left[ {\left( {2n + 3} \right)!} \right]}^2}}} = \\ \;\;\;\;\;\; - \frac{{\left( {n + 2} \right)\left( {48{n^2} + 202n + 211} \right)\left( {4n + 5} \right)!}}{{{2^{4n + 5}}{{\left[ {\left( {2n + 5} \right)!} \right]}^2}}} < 0. \end{array} $ (15)

从不等式(14) 和(15) 中可清楚地看到序列{cn/dn}n=0对所有n≥0是严格单调下降的.所以, 由引理1和式(13) 协同序列{cn/dn}n=0的单调性可容易地得到引理5.

引理6  函数$h\left( t \right)=\frac{\cosh \left( t \right){{I}_{0}}\left( t \right)-1}{t\left[\cosh \left( 2t \right)-1 \right]}$在(0, ∞)内严格单调下降.

证明  由引理3(A)得到

$ \begin{array}{l} h\left( t \right) = \frac{{\sum\limits_{n = 0}^\infty {\frac{{\left( {4n} \right)!}}{{{2^{2n}}{{\left[ {\left( {2n} \right)!} \right]}^3}}}{t^{2n}} - 1} }}{{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n}} - 1} }} = \frac{{\sum\limits_{n = 1}^\infty {\frac{{\left( {4n} \right)!}}{{{2^{2n}}{{\left[ {\left( {2n} \right)!} \right]}^3}}}{t^{2n}}} }}{{\sum\limits_{n = 1}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n}}} }} = \\ \;\;\;\;\;\;\;\;\;\frac{{\sum\limits_{n = 0}^\infty {\frac{{\left( {4n + 4} \right)!}}{{{2^{2n + 2}}{{\left[ {\left( {2n + 2} \right)!} \right]}^3}}}{t^{2n + 2}}} }}{{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}}{t^{2n + 2}}} }} = \frac{{\sum\limits_{n = 0}^\infty {{u_n}{t^{2n}}} }}{{\sum\limits_{n = 0}^\infty {{v_n}{t^{2n}}} }}, \end{array} $ (16)

其中,

$ {u_n} = \frac{{\left( {4n + 4} \right)!}}{{{2^{2n + 2}}{{\left[ {\left( {2n + 2} \right)!} \right]}^3}}} > 0,{v_n} = \frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}} > 0. $ (17)

经简单计算得到

$ \begin{array}{l} \frac{{{u_{n + 1}}}}{{{v_{n + 1}}}} - \frac{{{u_n}}}{{{v_n}}} = \frac{{\left( {4n + 8} \right)!}}{{{2^{4n + 8}}{{\left[ {\left( {2n + 4} \right)!} \right]}^2}}} - \frac{{\left( {4n + 4} \right)!}}{{{2^{4n + 4}}{{\left[ {\left( {2n + 2} \right)!} \right]}^2}}} = \\ - \frac{{\left( {n + 2} \right)\left( {2n + 3} \right)\left( {8n + 13} \right)\left( {4n + 4} \right)!}}{{{2^{4n + 5}}{{\left[ {\left( {2n + 4} \right)!} \right]}^2}}} < 0. \end{array} $ (18)

从不等式(17) 和(18) 中可清楚地看到序列{un/vn}0对所有n≥0是严格单调下降的.所以,由引理1和式(16) 协同序列{un/vn}0的单调性可容易地得到引理6.

引理7  函数$k\left( t \right)=\frac{I_{0}^{2}\left( t \right)-1}{\cosh \left( 2t \right)-1}$在(0, ∞)内严格单调下降.

证明  由引理2得到

$ \begin{array}{l} k\left( t \right) = \frac{{\sum\limits_{n = 0}^\infty {\frac{{\left( {2n} \right)}}{{{2^{2n}}{{\left( {n!} \right)}^4}}}{t^{2n}} - 1} }}{{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n}} - 1} }} = \frac{{\sum\limits_{n = 1}^\infty {\frac{{\left( {2n} \right)!}}{{{2^{2n}}{{\left( {n!} \right)}^4}}}{t^{2n}}} }}{{\sum\limits_{n = 1}^\infty {\frac{{{2^{2n}}}}{{\left( {2n} \right)!}}{t^{2n}}} }} = \\ \;\;\;\;\;\;\;\;\;\;\frac{{\sum\limits_{n = 0}^\infty {\frac{{\left( {2n + 2} \right)}}{{{2^{2n + 2}}{{\left[ {\left( {n + 1} \right)!} \right]}^4}}}{t^{2n + 2}}} }}{{\sum\limits_{n = 0}^\infty {\frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}}{t^{2n + 2}}} }} = \frac{{\sum\limits_{n = 0}^\infty {{x_n}{t^{2n}}} }}{{\sum\limits_{n = 0}^\infty {{y_n}{t^{2n}}} }}, \end{array} $ (19)

其中,

$ {x_n} = \frac{{\left( {2n + 2} \right)!}}{{{2^{2n + 2}}{{\left[ {\left( {n + 1} \right)!} \right]}^4}}} > 0,{y_n} = \frac{{{2^{2n + 2}}}}{{\left( {2n + 2} \right)!}} > 0. $ (20)

经简单计算得到

$ \begin{array}{l} \frac{{{x_{n + 1}}}}{{{y_{n + 1}}}} - \frac{{{x_n}}}{{{y_n}}} = \frac{{{{\left[ {\left( {2n + 4} \right)!} \right]}^2}}}{{{2^{4n + 8}}{{\left[ {\left( {n + 2} \right)!} \right]}^4}}} - \frac{{{{\left[ {\left( {2n + 2} \right)!} \right]}^2}}}{{{2^{4n + 4}}{{\left[ {\left( {n + 1} \right)!} \right]}^4}}} = \\ \;\;\;\;\;\;\; - \frac{{{{\left( {n + 2} \right)}^2}\left( {4n + 7} \right){{\left[ {\left( {2n + 2} \right)!} \right]}^2}}}{{{2^{4n + 6}}{{\left[ {\left( {n + 2} \right)!} \right]}^4}}} < 0. \end{array} $ (21)

从不等式(20) 和(21) 中可清楚地看到序列{xn/yn}0对所有n≥0是严格单调下降的.所以,由引理1和式(19) 协同序列{xn/yn}0的单调性可容易地得到引理7.

2 主要结果及证明

定理1  双向不等式

$ \begin{array}{l} \frac{{{\alpha _1}{Q^2}\left( {a,b} \right) + \left( {1 + {\alpha _1}} \right){G^2}\left( {a,b} \right)}}{{G\left( {a,b} \right)}} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;\;\frac{{{\beta _1}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _1}} \right){G^2}\left( {a,b} \right)}}{{G\left( {a,b} \right)}} \end{array} $ (22)

对所有a, b>0和ab成立当且仅当α1≤0且β1≥1/8.

证明  不等式(22) 可写成如下形式:

$ {\alpha _1}\frac{{G\left( {a,b} \right){\rm{TQ}}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}}{{{Q^2}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}} < {\beta _1}. $ (23)

G(a, b), Q(a, b)和TQ(a, b)是对称和一阶齐次的, 不失一般性, 假设a>b>0,t=(log a-log b)/2>0, 则由式(5) 和(6), 不等式(23) 变成

$ {\alpha _1} < f\left( t \right) < {\beta _1}, $ (24)

其中函数f(t)的定义见引理4.

注意到

$ \mathop {\lim }\limits_{t \to {0^ + }} f\left( t \right) = \frac{1}{8},\;\;\;\mathop {\lim }\limits_{t \to \infty } f\left( t \right) = 0, $ (25)

由不等式(23)(24) 和等式(25) 协同引理4, 则不等式(22) 对所有a, b>0和ab成立当且仅当α1≤0且β1≥1/8.

推论1  不等式I0(t) < $\frac{1}{4}$sinh2(t)+1对所有t∈(0, +∞)成立.

定理2  双向不等式

$ \begin{array}{l} \frac{{{\alpha _2}{Q^2}\left( {a,b} \right) + \left( {1 - {\alpha _2}} \right){G^2}\left( {a,b} \right)}}{{L\left( {a,b} \right)}} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;\;\frac{{{\beta _2}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _2}} \right){G^2}\left( {a,b} \right)}}{{L\left( {a,b} \right)}} \end{array} $ (26)

对所有a, b>0和ab成立当且仅当α2≤0且β2≥5/24.

证明  不等式(26) 可改写成

$ {\alpha _2}\frac{{L\left( {a,b} \right){\rm{TQ}}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}}{{{Q^2}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}} < {\beta _2}. $ (27)

G(a, b), L(a, b), Q(a, b)和TQ(a, b)是对称和一阶齐次的, 不失一般性, 假设a>b>0,t=(log a-log b)/2>0, 则由式(5) 和(6),不等式(27) 变成

$ {\alpha _2} < g\left( t \right) < {\beta _2}, $ (28)

其中函数g(t)的定义见引理5.

注意到

$ \mathop {\lim }\limits_{t \to {0^ + }} g\left( t \right) = \frac{4}{{25}},\;\;\;\mathop {\lim }\limits_{t \to \infty } g\left( t \right) = 0, $ (29)

由不等式(27)(28) 和等式(29) 协同引理5, 则不等式(26) 对所有a, b>0和ab成立当且仅当α2≤0且β2≥5/24.

推论2  双向不等式

$ tcsch\left( t \right) < {I_0}\left( t \right) < \frac{5}{{12}}t\sinh \left( t \right) + tcsch\left( t \right) $

对所有t∈(0, +∞)成立.

定理3  双向不等式

$ \begin{array}{l} \frac{{{\alpha _3}{Q^2}\left( {a,b} \right) + \left( {1 - {\alpha _3}} \right){G^2}\left( {a,b} \right)}}{{A\left( {a,b} \right)}} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\;\;\;\frac{{{\beta _3}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _3}} \right){G^2}\left( {a,b} \right)}}{{A\left( {a,b} \right)}} \end{array} $ (30)

对所有a, b>0和ab成立当且仅当α3≤0且β3≥3/8.

证明  不等式(30) 可改写为

$ {\alpha _3}\frac{{A\left( {a,b} \right){\rm{TQ}}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}}{{{Q^2}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}} < {\beta _3}. $ (31)

G(a, b), A(a, b), Q(a, b)和TQ(a, b)是对称和一阶齐次的, 不失一般性, 假设a>b>0,t=(log a-log b)/2>0, 则由式(5) 和(6),不等式(31) 变成

$ {\alpha _3} < h\left( t \right) < {\beta _3}, $ (32)

其中函数h(t)的定义见引理6.

注意到

$ \mathop {\lim }\limits_{t \to {0^ + }} h\left( t \right) = \frac{3}{8},\;\;\;\mathop {\lim }\limits_{t \to \infty } h\left( t \right) = 0, $ (33)

由不等式(31)(32) 和等式(33) 协同引理6, 则不等式(30) 对所有a, b>0和ab成立当且仅当α3≤0且β3≥3/8.

推论3  双向不等式

$ sech\left( t \right) < {I_0}\left( t \right) < \frac{3}{4}\cosh \left( t \right) + \frac{1}{4}{\rm{sech}}\left( t \right) $

对所有t∈(0, +∞)成立.

定理4  双向不等式

$ \begin{array}{l} \sqrt {{\alpha _4}{Q^2}\left( {a,b} \right) + \left( {1 - {\alpha _4}} \right){G^2}\left( {a,b} \right)} < {\rm{TQ}}\left( {a,b} \right) < \\ \;\;\;\;\;\sqrt {{\beta _4}{Q^2}\left( {a,b} \right) + \left( {1 - {\beta _4}} \right){G^2}\left( {a,b} \right)} \end{array} $ (34)

对所有a, b>0和ab成立当且仅当α4≤0且β4≥1/4.

证明  不等式(30) 可改写为

$ {\alpha _4} < \frac{{{\rm{T}}{{\rm{Q}}^2}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}}{{{{\rm{Q}}^2}\left( {a,b} \right) - {G^2}\left( {a,b} \right)}} < {\beta _4}. $ (35)

不失一般性, 假设a>b>0,t=(log a-log b)/2>0, 则由式(5) 和(6),不等式(34) 变成

$ {\alpha _4} < k\left( t \right) < {\beta _4}, $ (36)

其中函数k(t)的定义见引理7.

注意到

$ \mathop {\lim }\limits_{t \to {0^ + }} k\left( t \right) = \frac{1}{4},\;\;\;\mathop {\lim }\limits_{t \to \infty } k\left( t \right) = 0, $ (37)

由不等式(35)(36) 和式(37) 协同引理7, 则不等式(34) 对所有a, b>0和ab成立当且仅当α4≤0且β4≥1/4.

推论4  不等式${{I}_{0}}\left( t \right)<\frac{1}{2}\sqrt{\cosh \left( 2t \right)+3}$对所有t∈(0, +∞)成立.

参考文献
[1] TOADER G. Some mean values related to the arithmetic-geometric mean[J]. Journal of Mathematical Analysis and Applications, 1998, 218(2): 358–368. DOI:10.1006/jmaa.1997.5766
[2] QI F, SHI X T, LIU F F, et al. A double inequality for an integral mean in terms of the exponential and logarithmic means[J]. Periodica Mathematica Hungarica, 2016. DOI:10.1007/s10998-016-0181-9
[3] YANG Z H. Some sharp inequalities for the Toader-Qi mean[J]. arXiv:1507.05430.
[4] YANG Z H, CHU Y M. On approximating the modified Bessel function of the first kind and Toader-Qi mean[J]. Journal of Inequalities and Applications, 2016, 2016(1): 40. DOI:10.1186/s13660-016-0988-1
[5] YANG Z H, CHU Y M, SONG Y Q. Sharp bounds for Toader-Qi mean in terms of logarithmic and identic means[J]. Math Inequal Appl, 2016, 19(2): 721–730.
[6] YANG Z H, CHU Y M. A sharp lower bound for Toader-Qi mean with applications[J]. Journal of Function Spaces, 2016:Article ID 4165601. file:///D:/Users/Administrator/Downloads/4165601.pdf.
[7] GUO B N, QI F. Some inequalities and absolute monotonicity for modified Bessel functions of the first kind[J]. Commun Korean Math Soc, 2016, 31(2): 355–363. DOI:10.4134/CKMS.2016.31.2.355
[8] ABRAMOWITZ M, STEGUN I A. Handbook of Mathematical Functions:With Formulas, Graphs, and Mathematical Tables[M]. New York: Dover Publications, 1965.
[9] ANDERSON G D, VAMANAMURTHY M K, VUORINEN M. Conformal Invariants, Quasiconformal Maps, and Special Functions[C]//Quasiconformal Space Mappings. Heidelberg:Springer, 1992:1-19.
[10] WATSON G N. A Treatise on the Theory of Bessel Functions[M]. Cambridge: Cambridge University Press, 1995.
[11] SIMI AC'G S, VUORINEN M. Landen inequalities for zero-balanced hypergeometric functions[J]. Abstract and Applied Analysis, 2012, 2012: 932061.
[12] THIRUVENKATACHAR V R, NANJUNDIAH T S. Inequalities concerning Bessel functions and orthogonal polynomials[J]. Proceedings Mathematical Sciences, 1951, 33(6): 373–384.