文章快速检索     高级检索
  浙江大学学报(理学版)  2017, Vol. 44 Issue (4): 403-410  DOI:10.3785/j.issn.1008-9497.2017.04.004
0

引用本文 [复制中英文]

宋振云, 陈少元, 胡付高. MM-凸函数及其Jensen型不等式[J]. 浙江大学学报(理学版), 2017, 44(4): 403-410. DOI: 10.3785/j.issn.1008-9497.2017.04.004.
[复制中文]
SONG Zhenyun, CHEN Shaoyuan, HU Fugao. MM-convex function & its Jensen-type inequality[J]. Journal of Zhejiang University(Science Edition), 2017, 44(4): 403-410. DOI: 10.3785/j.issn.1008-9497.2017.04.004.
[复制英文]

基金项目

教育部科学技术研究重点项目(212109)

作者简介

宋振云(1958-), ORCID:http://orcid.org/0000-0002-7373-9733, 男, 教授, 主要从事凸分析及其应用研究, E-mail:hbsy12358@126.com

文章历史

收稿日期:2016-09-19
MM-凸函数及其Jensen型不等式
宋振云1 , 陈少元1 , 胡付高2     
1. 湖北职业技术学院 机电工程学院, 湖北 孝感 432000;
2. 湖北工程学院 数学与统计学院, 湖北 孝感 432000
摘要: 考虑函数的广义凸性问题,利用区间上的二元幂平均定义了MM-凸函数,讨论了MM-凸函数的若干判定定理及运算性质,建立了其Jensen型不等式,并给出了Jensen型不等式的等价形式及推论.结果表明,MM-凸函数是比较函数定义区间内任意两点的幂平均函数值与其函数值的幂平均大小所确定的各类凸函数的推广.MM-凸函数概念的引入,为深入研究凸函数和拓展凸函数概念探索了一条新途径.
关键词: 凸函数    MM-凸函数    判定定理    运算性质    Jensen型不等式    
MM-convex function & its Jensen-type inequality
SONG Zhenyun1 , CHEN Shaoyuan1 , HU Fugao2     
1. School of Mechanical & Electrical Engineering, Hubei Polytechnic Institute, Xiaogan 432000, Hubei Province, China;
2. School of Mathematics & Statistics, Hubei Engineering University, Xiaogan 432000, Hubei Province, China
Abstract: Considering the general convexity of functions, the authors present the definition of MM-convex function with two variables power means within the interval. Based on the definition, this article discusses its judgment theorems and operation properties, sets up its Jensen-type inequality, and provides the equivalent form of Jensen-type inequality and the deduction. Results show that MM-convex function is an extension of all convex functions determined by the power mean value of two arbitrary points within the definition domain of comparison function and by the power mean of the value. The introduction of MM-convex function brings an effective approach to deep study and further extension of convex function.
Key words: convex function    MM-convex function    judgment theorem    operation property    Jensen-type inequality    
0 引言

aiR+ti∈[0, 1](i=1, 2, …, n),且$\sum\limits_{i = 1}^n {{t_i}} = 1$,记

$ \begin{array}{l} {\rm{M}}_n^{\left[ r \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = \\ \left\{ \begin{array}{l} {\left[ {\sum\limits_{i = 1}^n {{t_i}a_i^r} } \right]^{\frac{1}{r}}},\;\;\;r \ne 0,\\ \prod\limits_{i = 1}^n {a_i^{{t_i}}} ,\;\;\;\;r = 0,\\ \max \left\{ {{a_1},{a_2}, \cdots ,{a_n}} \right\},\;\;\;\;r = + \infty ,\\ \min \left\{ {{a_1},{a_2}, \cdots ,{a_n}} \right\},\;\;\;\;r = - \infty , \end{array} \right. \end{array} $ (1)

则称Mn[r](t1, t2, …, tn; a1, a2, …, an)为正数a1, a2, …, an的加权r次幂平均,简称为n元加权幂平均.特别地,称

$ {\rm{M}}_n^{\left[ 1 \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = {\rm{A}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right), $
$ {\rm{M}}_n^{\left[ 0 \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = {\rm{G}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right), $
$ {\rm{M}}_n^{\left[ { - 1} \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = {\rm{H}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right), $
$ {\rm{M}}_n^{\left[ 2 \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = {\rm{SR}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right), $
$ {\rm{M}}_n^{\left[ { - 2} \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = {\rm{HS}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right), $
$ {\rm{M}}_n^{\left[ 3 \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = {\rm{CR}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right), $
$ {\rm{M}}_n^{\left[ { - 3} \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{a_1},{a_2}, \cdots ,{a_n}} \right) = {\rm{HC}}\left( {{a_1},{a_2}, \cdots ,{a_n}} \right) $

分别为n元加权算术平均、n元加权几何平均、n元加权调和平均、n元加权平方根平均、n元加权调和平方根平均、n元加权立方根平均、n元加权调和立方根平均.

针对n元加权幂平均,文献[1]进行了深入研究,并给出了许多重要结果,此处不再赘述.

n元加权幂平均Mn[r](t1, t2, …, tn; a1, a2…, an),由式(1) 易得如下加权幂平均恒等关系式:

(ⅰ)[Mn[r](t1, t2, …, tn; a1, a2, …, an)]r=Mn[1](t1, t2, …, tn; a1r, a2r, …, anr);

(ⅱ)[Mn[1](t1, t2, …, tn; a1, a2, …, an)]${\frac{1}{r}}$=Mn[r](t1, t2, …, tn; a1${\frac{1}{r}}$, a2${\frac{1}{r}}$, …, an${\frac{1}{r}}$);

(ⅲ)[Mn[r](t1, t2, …, tn; a1${\frac{1}{r}}$, a2${\frac{1}{r}}$, …, an${\frac{1}{r}}$)]r=Mn[1](t1, t2, …, tn; a1, a2, …, an);

(ⅳ)expMn[1](t1, t2, …, tn; a1, a2, …, an)=Mn[0](t1, t2, …, tn; exp a1, exp a2, …, exp an);

ai∈(1, +∞),则

(ⅴ)lnMn[0](t1, t2, …, tn; a1, a2, …, an)=Mn[1](t1, t2, …, tn; ln a1, ln a2, …, ln an).

特别地,∀x1, x2R+及∀t1, t2, α∈[0, 1],有

(ⅵ)M2[1](M2[1](α, 1-α; t1, t2), 1-M2[1](α, 1-α; t1, t2); x1, x2)=M2[1](α, 1-α; M2[1](t1, 1-t1; x1, x2), M2[1](t2, 1-t2; x1, x2)).

凸函数[2]、几何凸函数[3]、调和凸函数[4]、平方凸函数[5]、调和平方凸函数[6]r-平均凸函数[7]等都利用幂平均给出的定义,这些凸函数在许多领域的应用及其重要作用已为人熟知,但缺乏规范、简洁的统一定义,考虑到数学的缜密性和严谨性,各方法尚存在不可忽视的缺失,仅就r-平均凸函数而言,张孔生等[8]在对幂指数做了相应限制的前提下,给出了“P方凸函数”的定义,吴善和[9]充分考虑了幂指数取值的任意性,在定义中不得不用2个公式来确定其定义的“rP-凸函数”,席博彦等[7]通过引入加权平均的概念定义了“r-平均凸函数”,虽然弥补了前2种定义的缺陷,但仍未完全解决凸函数定义的统一和简洁性问题,特别是后续推广应用问题.其他类型的凸函数定义中的一些问题,不再列举.

对区间上的二元幂平均确定的凸函数,本文给出了规范统一的定义,并进行了全面深入研究.

定义1    设IR+, f:IR+, 若∀x1, x2I及∀t∈[0, 1],存在r, pR(rp≠±∞),使得

$ \begin{array}{l} f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right) \le \\ \;\;\;\;\;\;\;\;\;{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;f\left( {{x_1}} \right),f\left( {{x_2}} \right)} \right), \end{array} $ (2)

则称f(x)为I上的MrMp-凸函数.如果不等式(2) 中的不等号反向,则称f(x)为I上的MrMp-凹函数.当r=p≠0时,则称f(x)为I上的r次幂平均凸(凹)函数.

显然,当r=p=1, 0, -1, 2, -2或r=pR时,MrMp-凸函数为凸函数、几何凸函数、调和凸函数、平方凸函数、调和平方凸函数和r次幂平均凸函数;当r=0且p=1, -1或pR(p≠0) 时,MrMp-凸函数为GA-凸函数[10]、GH-凸函数[11]和GMp-凸函数[12];当r=1且p=0, -1, 2或pR时,MrMp-凸函数为AG-凸函数(对数凸函数)[13]、AH-凸函数[14]、AR-凸函数[15]和AMp-凸函数[16];当r=-1且p=0, 1或pR时,MrMp-凸函数为HG-凸函数[17]、HA-凸函数[18]和HMp-凸函数[19];当rRp=1, 0, -1时,MrMp-凸函数为MrA-凸函数(P-凸函数)[20]、MrG-凸函数[21]、MrH-凸函数[22].

为简洁和统一,将凸函数的记号MrMp及AMp、GMp、HMp和MrA、MrG、MrH分别记为MM及AM、GM、HM和MA、MG、MH.由于所有“M”均表示n元加权幂平均,本文规定:凸函数记号“MM”中,第1个M为n元加权r次幂平均,第2个M为n元加权p次幂平均.

1 MM-凸函数的判定

考虑到区间IR+上的幂函数τ(x)=xr(r≠0)、对数函数ω(x)=ln x和幂指复合函数ρ(x)=exp xr(r≠0) 是单调的, 记τ(I)=Irω(I)=ln Iρ(I)=exp Ir.∀r, pR,由于r=0,p=0时,MM-凸函数分别为几何凸函数、GA-凸函数、GH-凸函数、GM-凸函数、AG-凸函数、HG-凸函数、MG-凸函数,相关讨论参见文献[3, 10-13, 17, 21].本文约定:除r=p=0时MM-凸函数为几何凸函数外,其他都只讨论r≠0,p≠0的情形.

定理1    设IR+f:IR+,则

(ⅰ)当p>0时,f(x)为I上的MM-凸(凹)函数的充要条件是(f(x${\frac{1}{r}}$))pIr上的凸(凹)函数;

(ⅱ)当p<0时,f(x)为I上的MM-凸(凹)函数的充要条件是(f(x${\frac{1}{r}}$))pIr上的凹(凸)函数.

证明    这里仅证(ⅰ),用类似方法可证明(ⅱ).

g(x)=(f(x${\frac{1}{r}}$))p(xIr),则f(x${\frac{1}{r}}$)=(g(x))${\frac{1}{p}}$.

充分性:设∀x1, x2I, 则x1r, x2rIr, 所以,∀t∈[0, 1],由2个正数幂平均的性质[1]知,M2[r](t, 1-t; x1, x2)∈[min{x1, x2}, max{x1, x2}]⊆I,M2[1](t, 1-t; x1r, x2r)∈[min{x1r, x2r}, max{x1r, x2r}]⊆Ir,且[M2[1](t, 1-t; x1r, x2r)]${\frac{1}{r}}$I.若g(x)=(f(x${\frac{1}{r}}$))pIr上的凸函数,且p>0,则由加权幂平均恒等关系式和凸函数的定义,有

$ \begin{array}{l} f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right) = f\left( {\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;x_1^r,} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;\left. {{{\left. {\left. {x_2^r} \right)} \right)}^{\frac{1}{r}}}} \right) = {\left[ {g\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;x_1^r,x_2^r} \right)} \right)} \right]^{\frac{1}{p}}} \le \\ \;\;\;\;\;\;\;\;{\left[ {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;g\left( {x_1^r} \right),g\left( {x_2^r} \right)} \right)} \right]^{\frac{1}{p}}} = \\ \;\;\;\;\;\;\;\;{\left[ {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;{{\left( {f\left( {{x_1}} \right)} \right)}^p},{{\left( {f\left( {{x_2}} \right)} \right)}^p}} \right)} \right]^{\frac{1}{p}}} = \\ \;\;\;\;\;\;\;\;{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;f\left( {{x_1}} \right),f\left( {{x_2}} \right)} \right), \end{array} $

f(x)为I上的MM-凸函数.

必要性:设∀x1, x2Ir,则x1${\frac{1}{r}}$, x2${\frac{1}{r}}$I,所以, ∀t∈[0, 1],由2个正数幂平均的性质知,

$ \begin{array}{l} {\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;{x_1},{x_2}} \right) \in \left[ {\min \left\{ {{x_1},{x_2}} \right\},\max \left\{ {{x_1},{x_2}} \right\}} \right] \subseteq \\ {{\bf{I}}^r},{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;x_1^{\frac{1}{r}},x_2^{\frac{1}{r}}} \right) \in \left[ {\min \left\{ {x_1^{\frac{1}{r}},x_2^{\frac{1}{r}}} \right\},\max \left\{ {x_1^{\frac{1}{r}},} \right.} \right.\\ \left. {\left. {x_2^{\frac{1}{r}}} \right\}} \right] \subseteq {\bf{I}},{\rm{且}}{\left[ {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right]^{\frac{1}{r}}} \in {\bf{I}}. \end{array} $

f(x)是I上的MM-凸函数,且p>0,则由加权幂平均恒等式和MM-凸函数的定义,有

$ \begin{array}{l} g\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right) = \left[ {f\left( {\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;{x_1},} \right.} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;{\left. {\left. {{{\left. {\left. {{x_2}} \right)} \right)}^{\frac{1}{r}}}} \right)} \right]^p} = {\left[ {f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;x_1^{\frac{1}{r}},x_2^{\frac{1}{r}}} \right)} \right)} \right]^p} \le \\ \;\;\;\;\;\;\;\;{\left[ {{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;f\left( {x_1^{\frac{1}{r}}} \right),f\left( {x_2^{\frac{1}{r}}} \right)} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\;{\left[ {{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;{{\left( {g\left( {{x_1}} \right)} \right)}^{\frac{1}{p}}},{{\left( {g\left( {{x_2}} \right)} \right)}^{\frac{1}{p}}}} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\;{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;g\left( {{x_1}} \right),g\left( {{x_2}} \right)} \right), \end{array} $

g(x)=(f(x${\frac{1}{r}}$))pIr上的凸函数.

f(x)为I上的MM-凹函数,则以上证明中的不等号反向,因此定理1的后半部分成立.

定理2    设IR+f:IR+,则

(ⅰ)当p>0时,f(x)为I上的MM-凸(凹)函数的充要条件是exp[f((ln x)${\frac{1}{r}}$)]p(r≠0) 为exp Ir上的几何凸(凹)函数;

(ⅱ)当p<0时,f(x)为I上的MM-凸(凹)函数的充要条件是exp[f((ln x)${\frac{1}{r}}$)]p(r≠0) 为exp Ir上的几何凹(凸)函数.

证明    仅证(ⅰ),用相同的方法可证明(ⅱ).

g(x)=exp[f((ln x)${\frac{1}{r}}$)]p(x∈exp Ir),则[f((ln x)${\frac{1}{r}}$)]p=ln g(x).

充分性:设∀x1, x2I, 则x1r, x2rIr,exp x1r, exp x2r∈exp Ir,所以,∀t∈[0, 1],由2个正数幂平均的性质知,M2[r](t, 1-t; x1, x2)∈I,M2[1](t, 1-t; x1r, x2r)∈Ir,M2[0](t, 1-t; exp x1r, exp x2r)∈exp Ir,且exp M2[1](t, 1-t; x1r, x2r)∈exp Ir.若g(x)=exp(f((ln x)${\frac{1}{r}}$))p是exp Ir上的几何凸函数, 则由加权幂平均的恒等关系式和几何凸函数的定义, 有

$ \begin{array}{l} {\left[ {f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right)} \right]^p} = \\ \;\;\;\;\;\;\;{\left[ {f\left( {{{\left( {\ln \left( {\exp {\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;x_1^r,x_2^r} \right)} \right)} \right)}^{\frac{1}{r}}}} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\ln g\left( {\exp {\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;x_1^r,x_2^r} \right)} \right) = \\ \;\;\;\;\;\;\;\ln g\left( {{\rm{M}}_2^{\left[ 0 \right]}\left( {t,1 - t;\exp x_1^r,\exp x_2^r} \right)} \right) \le \\ \;\;\;\;\;\;\;\ln {\rm{M}}_2^{\left[ 0 \right]}\left( {t,1 - t;g\left( {\exp x_1^r} \right),g\left( {\exp x_2^r} \right)} \right) = \\ \;\;\;\;\;\;\;\ln {\rm{M}}_2^{\left[ 0 \right]}\left( {t,1 - t;\exp{{\left( {f\left( {{x_1}} \right)} \right)}^p},\exp{{\left( {f\left( {{x_2}} \right)} \right)}^p}} \right) = \\ \;\;\;\;\;\;\;{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;\ln \left( {\exp{{\left( {f\left( {{x_1}} \right)} \right)}^p}} \right),\ln \left( {\exp{{\left( {f\left( {{x_2}} \right)} \right)}^p}} \right)} \right) = \\ \;\;\;\;\;\;\;{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;{{\left( {f\left( {{x_1}} \right)} \right)}^p},{{\left( {f\left( {{x_2}} \right)} \right)}^p}} \right), \end{array} $

f(M2[r](t, 1-t; x1, x2))≤[M2[1](t, 1-t; (f(x1))p, (f(x2))p)]${\frac{1}{p}}$=M2[p](t, 1-t; f(x1), f(x2)).

f(x)为I上的MM-凸函数.

必要性:设∀x1, x2∈exp Ir,则ln x1, ln x2Ir,(ln x1)${\frac{1}{r}}$, (ln x2)${\frac{1}{r}}$I,所以,∀t∈[0, 1], 由2个正数的幂平均的性质知,M2[0](t, 1-t; x1, x2)∈exp Ir,M2[1](t, 1-t; ln x1, ln x2)∈Ir,M2[r](t, 1-t; (ln x1)${\frac{1}{r}}$, (ln x2)${\frac{1}{r}}$)∈I,且[ln M2[0](t, 1-t; x1, x2)]${\frac{1}{r}}$,[M2[1](t, 1-t; ln x1, ln x2)]${\frac{1}{r}}$I.若f(x)为I上的MM-凸函数,且p>0,则由加权幂平均的恒等关系式和MM-凸函数的定义,有

$ \begin{array}{l} g\left( {{\rm{M}}_2^{\left[ 0 \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right) = \\ \;\;\;\;\;\;\;\exp {\left[ {f\left( {{{\left( {\ln {\rm{M}}_2^{\left[ 0 \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right)}^{\frac{1}{r}}}} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\exp {\left[ {f\left( {{{\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;ln{x_1},ln{x_2}} \right)} \right)}^{\frac{1}{r}}}} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\exp {\left[ {f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{{\left( {\ln {x_1}} \right)}^{\frac{1}{r}}},{{\left( {\ln {x_2}} \right)}^{\frac{1}{r}}}} \right)} \right)} \right]^p} \le \\ \;\;\;\;\;\;\;\exp {\left[ {{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;f\left( {{{\left( {\ln {x_1}} \right)}^{\frac{1}{r}}}} \right),f\left. {\left( {{{\left( {\ln {x_2}} \right)}^{\frac{1}{r}}}} \right)} \right)} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\exp {\left[ {{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;{{\left( {\ln g\left( {{x_1}} \right)} \right)}^{\frac{1}{p}}},{{\left( {\ln g\left( {{x_2}} \right)} \right)}^{\frac{1}{p}}}} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\exp \left[ {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;\ln g\left( {{x_1}} \right),\ln g\left( {{x_2}} \right)} \right)} \right] = \\ \;\;\;\;\;\;\;\exp \left[ {\ln {\rm{M}}_2^{\left[ 0 \right]}\left( {t,1 - t;g\left( {{x_1}} \right),g\left( {{x_2}} \right)} \right)} \right] = \\ \;\;\;\;\;\;\;{\rm{M}}_2^{\left[ 0 \right]}\left( {t,1 - t;g\left( {{x_1}} \right),g\left( {{x_2}} \right)} \right), \end{array} $

所以g(x)=exp[f((ln x)${\frac{1}{r}}$)]p是exp Ir上的几何凸函数.

由以上证明可知,定理2(ⅰ)的后半部分亦成立.

类似地可证明:

定理3    设IR+f:IR+,则

(ⅰ)当p>0时,f(x)为I上的MM-凸(凹)函数的充要条件是(f(x))pI上的MA-凸(凹)函数;

(ⅱ)当p<0时,f(x)为I上的MM-凸(凹)函数的充要条件是(f(x))pI上的MA-凹(凸)函数.

定理4    设IR+f:IR+,则f(x)为I上的MM-凸(凹)函数的充要条件是f(x${\frac{1}{r}}$)为Ir上的AM-凸(凹)函数.

定理5    设IR+f:IR+,则

(ⅰ)当p>0时,f(x)为I上的MM-凸(凹)函数的充要条件是exp(f(x))pI上的MG-凸(凹)函数;

(ⅱ)当p<0时,f(x)为I上的MM-凸(凹)函数的充要条件是exp(f(x))pI上的MG-凹(凸)函数.

定理6    设IR+f:IR+,则f(x)为I上的MM-凸(凹)函数的充要条件是f((ln x)${\frac{1}{r}}$)为exp Ir上的GM-凸(凹)函数.

定理7    设IR+f:IR+,且f在区间I上连续,则

(ⅰ)当p>0时,函数f(x)是I上的MM-凸(凹)函数的充分必要条件是:∀x1, x2I,函数φ(t)=[f(M2[r](t, 1-t; x1, x2))]p为[0, 1]上的凸(凹)函数;

(ⅱ)当p<0时,函数f(x)是I上的MM-凸(凹)函数的充分必要条件是:∀x1, x2I,函数φ(t)=[f(M2[r](t, 1-t; x1, x2))]p为[0, 1]上的凹(凸)函数.

证明    只证(ⅰ),同理可证(ⅱ).

φ(t)=[f(M2[r](t, 1-t; x1, x2))]p(t∈[0, 1]),知φ(0)=(f(x2))pφ(1)=(f(x1))p.

充分性:若φ(t)为[0, 1]上的凸函数,且p>0,则∀x1, x2I及∀t∈[0, 1],有

$ \begin{array}{l} f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right) = {\left[ {\varphi \left( t \right)} \right]^{\frac{1}{p}}} = \\ \;\;\;\;\;\;\;\;{\left[ {\varphi \left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;1,0} \right)} \right)} \right]^{\frac{1}{p}}} \le \\ \;\;\;\;\;\;\;\;{\left[ {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;\varphi \left( 1 \right),\varphi \left( 0 \right)} \right)} \right]^{\frac{1}{p}}} = \\ \;\;\;\;\;\;\;\;{\left[ {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;{{\left( {f\left( {{x_1}} \right)} \right)}^p},{{\left( {f\left( {{x_2}} \right)} \right)}^p}} \right)} \right]^{\frac{1}{p}}} = \\ \;\;\;\;\;\;\;\;{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;f\left( {{x_1}} \right),f\left( {{x_2}} \right)} \right), \end{array} $

故函数f(x)是区间I上的MM-凸函数.

必要性:∀x1, x2I及∀t1, t2∈[0, 1],由2正数幂平均的性质知,M2[r](t1, 1-t1; x1, x2), M2[r](t2, 1-t2; x1, x2)∈I, 所以,∀α∈[0, 1]亦有M2[r](α, 1-α; M2[r](t1, 1-t1; x1, x2), M2[r](t2, 1-t2; x1, x2))∈I,且M2[1](α, 1-α; t1, t2)∈[min{t1, t2}, max{t1, t2}]⊆[0, 1],因此,M2[r](M2[1](α, 1-α; t1, t2), 1-M2[1](α, 1-α; t1, t2); x1, x2)∈I.若f(x)是I上的MM-凸函数,且p>0,则∀t1, t2∈[0, 1]及∀α∈[0, 1],由加权幂平均的恒等关系式和MM-凸函数的定义,有

$ \begin{array}{l} \varphi \left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,1 - \alpha ;{t_1},{t_2}} \right)} \right) = \left[ {f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,1 - \alpha ;{t_1},} \right.} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;{\left. {\left. {\left. {\left. {{t_2}} \right),1 - {\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,1 - \alpha ;{t_1},{t_2}} \right);{x_1},{x_2}} \right)} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\;\left[ {f\left( {\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,1 - \alpha ;{t_1},{t_2}} \right),1 - {\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,} \right.} \right.} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;{\left. {\left. {{{\left. {\left. {\left. {1 - \alpha ;{t_1},{t_2}} \right);x_1^r,x_2^r} \right)} \right)}^{\frac{1}{r}}}} \right)} \right]^p} = \left[ {f\left( {\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,} \right.} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;1 - \alpha ;{\rm{M}}_2^{\left[ 1 \right]}\left( {{t_1},1 - {t_1};x_1^r,x_2^r} \right),{\rm{M}}_2^{\left[ 1 \right]}\left( {{t_2},1 - {t_2};} \right.\\ \;\;\;\;\;\;\;\;{\left. {\left. {{{\left. {\left. {\left. {x_1^r,x_2^r} \right)} \right)} \right)}^{\frac{1}{r}}}} \right)} \right]^p} = \left[ {f\left( {\left[ {{\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,1 - \alpha ;\left( {{\rm{M}}_2^{\left[ r \right]}\left( {{t_1},} \right.} \right.} \right.} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;{\left. {\left. {{{\left. {\left. {{{\left. {\left. {1 - {t_1};x_1^r,x_2^r} \right)} \right)}^r},{{\left( {{\rm{M}}_2^{\left[ r \right]}\left( {{t_2},1 - {t_2};{x_1},{x_2}} \right)} \right)}^r}} \right)} \right]}^{\frac{1}{r}}}} \right)} \right]^p} = \\ \;\;\;\;\;\;\;\;\left[ {f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {\alpha ,1 - \alpha ;{\rm{M}}_2^{\left[ r \right]}\left( {{t_1},1 - {t_1};{x_1},{x_2}} \right),} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;{\left. {\left. {\left. {{\rm{M}}_2^{\left[ r \right]}\left( {{t_2},1 - {t_2};{x_1},{x_2}} \right)} \right)} \right)} \right]^p} \le \left[ {{\rm{M}}_2^{\left[ p \right]}\left( {\alpha ,1 - \alpha ;} \right.} \right.\\ \;\;\;\;\;\;\;\;f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {{t_1},1 - {t_1};{x_1},{x_2}} \right)} \right),f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {{t_2},1 - {t_2};} \right.} \right.\\ \;\;\;\;\;\;\;\;{\left. {\left. {\left. {\left. {{x_1},{x_2}} \right)} \right)} \right)} \right]^p} = {\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,1 - \alpha ;\left[ {f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {{t_1},1 - {t_1};} \right.} \right.} \right.} \right.\\ \;\;\;\;\;\;\;\;\left. {{{\left. {\left. {\left. {{x_1},{x_2}} \right)} \right)} \right]}^p},{{\left[ {f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {{t_2},1 - {t_2};{x_1},{x_2}} \right)} \right)} \right]}^p}} \right) = \\ \;\;\;\;\;\;\;\;{\rm{M}}_2^{\left[ 1 \right]}\left( {\alpha ,1 - \alpha ;\varphi \left( {{t_1}} \right),\varphi \left( {{t_2}} \right)} \right), \end{array} $

φ(t)=[f(M2[r](t, 1-t; x1, x2))]p是[0, 1]上的凸函数.

f(x)为I上的MM-凹函数,则以上证明中不等号反向,故定理7(ⅰ)的后半部分成立.

定理8    设IR+f:IR+

(ⅰ)若p>0,则f(x)为I上的MM-凸(凹)函数的充要条件是:∀x1, x2, x3Ix1x2x3,当r>0时,有

$ \begin{array}{l} \left( {x_3^r - x_2^r} \right){\left( {f\left( {{x_1}} \right)} \right)^p} + \left( {x_1^r - x_3^r} \right){\left( {f\left( {{x_2}} \right)} \right)^p} + \\ \;\;\;\;\;\left( {x_2^r - x_1^r} \right){\left( {f\left( {{x_3}} \right)} \right)^p} \ge \left( \le \right)0; \end{array} $ (3)

r<0时,有

$ \begin{array}{l} \left( {x_3^r - x_2^r} \right){\left( {f\left( {{x_1}} \right)} \right)^p} + \left( {x_1^r - x_3^r} \right){\left( {f\left( {{x_2}} \right)} \right)^p} + \\ \;\;\;\;\;\left( {x_2^r - x_1^r} \right){\left( {f\left( {{x_3}} \right)} \right)^p} \le \left( \ge \right)0. \end{array} $ (4)

(ⅱ)若p<0,则f(x)为I上的MM-凸(凹)函数的充要条件是:∀x1, x2, x3Ix1x2x3, 当r>0时,有

$ \begin{array}{l} \left( {x_3^r - x_2^r} \right){\left( {f\left( {{x_1}} \right)} \right)^p} + \left( {x_1^r - x_3^r} \right){\left( {f\left( {{x_2}} \right)} \right)^p} + \\ \;\;\;\;\;\left( {x_2^r - x_1^r} \right){\left( {f\left( {{x_3}} \right)} \right)^p} \le \left( \ge \right)0; \end{array} $ (5)

r<0时,有

$ \begin{array}{l} \left( {x_3^r - x_2^r} \right){\left( {f\left( {{x_1}} \right)} \right)^p} + \left( {x_1^r - x_3^r} \right){\left( {f\left( {{x_2}} \right)} \right)^p} + \\ \;\;\;\;\;\left( {x_2^r - x_1^r} \right){\left( {f\left( {{x_3}} \right)} \right)^p} \ge \left( \le \right)0. \end{array} $ (6)

证明    只证(ⅰ),同理可证(ⅱ).

必要性:∀x1, x2, x3Ix1x2x3,令$t = \frac{{x_3^r - x_2^r}}{{x_3^r - x_1^r}}$,则x2=M2[r](t, 1-t; x1, x3).

f(x)为I上的MM-凸函数,则

$ \begin{array}{l} f\left( {{x_2}} \right) = f\left( {M_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_3}} \right)} \right) \le M_2^{\left[ p \right]}\left( {t,1 - t;} \right.\\ \left. {f\left( {{x_1}} \right),f\left( {{x_3}} \right)} \right) = {\left[ {t{{\left( {f\left( {{x_1}} \right)} \right)}^p} + \left( {1 - t} \right){{\left( {f\left( {{x_3}} \right)} \right)}^p}} \right]^{\frac{1}{p}}} = \\ {\left[ {\frac{{x_3^r - x_2^r}}{{x_3^r - x_1^r}}{{\left( {f\left( {{x_1}} \right)} \right)}^p} + \frac{{x_2^r - x_1^r}}{{x_3^r - x_1^r}}{{\left( {f\left( {{x_3}} \right)} \right)}^p}} \right]^{\frac{1}{p}}}. \end{array} $

因为∀xI, f(x)>0,且p>0,注意到x1x2x3,则当r>0时,将上式整理即得

$ \begin{array}{l} \left( {x_3^r - x_2^r} \right){\left( {f\left( {{x_1}} \right)} \right)^p} + \left( {x_1^r - x_3^r} \right){\left( {f\left( {{x_2}} \right)} \right)^p} + \\ \;\;\;\;\;\;\left( {x_2^r - x_1^r} \right){\left( {f\left( {{x_3}} \right)} \right)^p} \ge 0. \end{array} $

r<0时,类似地,有

$ \begin{array}{l} \left( {x_3^r - x_2^r} \right){\left( {f\left( {{x_1}} \right)} \right)^p} + \left( {x_1^r - x_3^r} \right){\left( {f\left( {{x_2}} \right)} \right)^p} + \\ \;\;\;\;\;\;\left( {x_2^r - x_1^r} \right){\left( {f\left( {{x_3}} \right)} \right)^p} \le 0. \end{array} $

由于p>0,且当r>0或r<0时,以上证明步步可逆,所以充分性成立.

f(x)在I上是MM-凹的,则以上证明中的不等号反向,故定理8(ⅰ)的后半部分成立.

定理9    设IR+f:IR+,且fI上二阶可导,则fI上MM-凸(凹)函数的充分必要条件是

$ \begin{array}{l} \left( {p - 1} \right){\left( {f'\left( x \right)} \right)^2}x + f\left( x \right)f''\left( x \right)x + \\ \;\;\;\;\;\;\;\left( {1 - r} \right)f\left( x \right)f'\left( x \right) \ge \left( \le \right)0\left( {p \ne 0} \right). \end{array} $ (7)

证明    只证fI上MM-凸函数的情形,同理可证fI上MM-凹函数的情形.

x1, x2I,不失一般性,设x1x2,令x=[tx1r+(1-t)x2r]${\frac{1}{r}}$=M2[r](t, 1-t; x1, x2)(t∈[0, 1]),则由2个正数的幂平均性质知,x∈[x1, x2]⊆I.

对函数φ(t)=[f(M2[r](t, 1-t; x1, x2))]p=[f([tx1r+(1-t)x2r]${\frac{1}{r}}$)]p在区间[0, 1]上求变量t的一阶、二阶导数并以x代[tx1r+(1-t)x2r]${\frac{1}{r}}$,得

$ \begin{array}{l} \varphi '\left( t \right) = \frac{p}{r}{\left( {f\left( x \right)} \right)^{p - 1}}f'\left( x \right){x^{1 - r}}\left( {x_1^r - x_2^r} \right),\\ \varphi ''\left( t \right) = \frac{p}{{{r^2}}}{\left( {f\left( x \right)} \right)^{p - 1}}{x^{1 - 2r}}{\left( {x_1^r - x_2^r} \right)^2}\left[ {\left( {p - 1} \right) \times } \right.\\ \;\;\;\;\;\;\;\;\;{\left( {f'\left( x \right)} \right)^2}x + f\left( x \right)f''\left( x \right)x + \\ \;\;\;\;\;\;\;\;\;\left. {\left( {1 - r} \right)f\left( x \right)f'\left( x \right)} \right], \end{array} $

注意到xIR+f(x)>0(∀xI),所以

$ \begin{array}{l} \varphi ''\left( t \right) \ge \left( \le \right)0 \Leftrightarrow p\left[ {\left( {p - 1} \right){{\left( {f'\left( x \right)} \right)}^2}x + } \right.\\ \;\;\;\;\;\;\;\;\;f\left( x \right)f''\left( x \right)x + \left. {\left( {1 - r} \right)f\left( x \right)f'\left( x \right)} \right] \ge \left( \le \right)0. \end{array} $

由定理7知,当p>0时,f(x)是I上的MM-凸函数⇔∀x1, x2I, 函数φ(t)=[f(M2[r](t, 1-t; x1, x2))]p是[0, 1]上的凸函数⇔φ″(t)≥0⇔p((p-1)(f′(x))2x+f(x)f″(x)x+(1-r)f(x)f′(x))≥0⇔(p-1)(f′(x))2x+f(x)f″(x)x+(1-r)f(x)f′(x)≥0.

所以,当p>0时,f(x)为I上的MM-凸函数的充要条件是∀xI,有

$ \begin{array}{l} \left( {p - 1} \right){\left( {f'\left( x \right)} \right)^2}x + f\left( x \right)f''\left( x \right)x + \\ \;\;\;\;\;\;\left( {1 - r} \right)f\left( x \right)f'\left( x \right) \ge 0. \end{array} $

p<0时,f(x)是I上的MM-凸函数⇔∀x1, x2I, 函数φ(t)=[f(M2[r](t, 1-t; x1, x2))]p是[0, 1]上的凹函数⇔φ″(t)≤0⇔p[(p-1)(f′(x))2x+f(x)f″(x)x+(1-r)f(x)f′(x)]≤0⇔(p-1)(f′(x))2x+f(x)f″(x)x+(1-r)f(x)f′(x)≥0.

所以,当p<0时,f(x)为I上的MM-凸函数的充要条件仍然是∀xI不等式(7) 成立.

故当p≠0时,f(x)为I上的MM-凸函数的充要条件是∀xI不等式(7) 成立.

2 MM-凸函数的复合运算性质

定理10    设A, IR+BIf:IR+, μ:AB,则

(ⅰ)若y=f(u)为I上严格递增的MM-凸函数,u=μ(x)为A上的r次幂平均凸函数(r-平均凸函数[7]),则y=f(μ(x))为A上的MM-凸函数;

(ⅱ)若y=f(u)为I上严格递减的MM-凸函数,u=μ(x)为A上的r次幂平均凹函数(r-平均凹函数),则y=f(μ(x))为A上的MM-凸函数;

(ⅲ)若y=f(u)为I上严格递增的MM-凹函数,u=μ(x)为A上的r次幂平均凹函数(r-平均凹函数),则y=f(μ(x))为A上的MM-凹函数;

(ⅳ)若y=f(u)为I上严格递减的MM-凹函数,u=μ(x)为A上的r次幂平均凸函数(r-平均凸函数),则y=f(μ(x))为A上的MM-凹函数.

证明    只证(ⅰ),同理可证(ⅱ)、(ⅲ)、(ⅳ).

x1, x2AR+及∀t∈[0, 1],显然有M2[r](t, 1-t; x1, x2)∈[min{x1, x2}, max{x1, x2}]⊆A,因为μ:ABI,所以,μ(x1), μ(x2), μ(M2[r](t, 1-t; x1, x2))∈BI, 且

$ \begin{array}{l} {\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;\mu \left( {{x_1}} \right),\mu \left( {{x_2}} \right)} \right) \in \left[ {\min \left\{ {\mu \left( {{x_1}} \right),\mu \left( {{x_2}} \right)} \right\},} \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\max \left\{ {\mu \left( {{x_1}} \right),\mu \left( {{x_2}} \right)} \right\}} \right] \subseteq {\bf{B}} \subseteq {\bf{I}}, \end{array} $

u=μ(x)是A上的r次幂平均凸函数,所以

$ \begin{array}{l} \mu \left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right) \le \\ \;\;\;\;\;\;\;{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;\mu \left( {{x_1}} \right),\mu \left( {{x_2}} \right)} \right), \end{array} $

y=f(u)为I上严格递增的MM-凸函数,所以

$ \begin{array}{l} f\left( {\mu \left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right)} \right) \le \\ \;\;\;\;\;\;\;\;f\left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;\mu \left( {{x_1}} \right),\mu \left( {{x_2}} \right)} \right)} \right) \le \\ \;\;\;\;\;\;\;\;{\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;f\left( {\mu \left( {{x_1}} \right)} \right),f\left( {\mu \left( {{x_2}} \right)} \right)} \right), \end{array} $

y=f(μ(x))是A上的MM-凸函数.

类似地可以证明:

定理11    设A, IR+BIf:IR+, μ:AB,则

(ⅰ)若y=f(u)为I上严格递增的r次幂平均凸函数(r-平均凸函数),u=μ(x)为A上的MM-凸函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅱ)若y=f(u)为I上严格递减的r次幂平均凸函数(r-平均凸函数),u=μ(x)为A上的MM-凹函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅲ)若y=f(u)为I上严格递减的r次幂平均凹函数(r-平均凹函数),u=μ(x)为A上的MM-凸函数,则y=f(μ(x))为A上的MM-凹函数;

(ⅳ)若y=f(u)为I上严格递增的r次幂平均凹函数(r-平均凹函数),u=μ(x)为A上的MM-凹函数,则y=f(μ(x))为A上的MM-凹函数.

定理12    设A, IR+BIf:IR+, μ:AB,则

(ⅰ)若y=f(u)为I上严格递增的AM-凸函数,u=μ(x)为A上的MA-凸函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅱ)若y=f(u)为I上严格递减的AM-凸函数,u=μ(x)为A上的MA-凹函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅲ)若y=f(u)为I上严格递增的AM-凹函数,u=μ(x)为A上的MA-凹函数,则y=f(μ(x))为A上的MM-凹函数;

(ⅳ)若y=f(u)为I上严格递减的AM-凹函数,u=μ(x)为A上的MA-凸函数,则y=f(μ(x))为A上的MM-凹函数.

证明    只证(ⅰ),同理可证(ⅱ)、(ⅲ)、(ⅳ).

x1, x2A及∀t∈[0, 1], 有M2[r](t, 1-t; x1, x2)∈A,因为μ:ABI,所以,μ(x1), μ(x2),μ(M2[r](t, 1-t; x1, x2))∈BI,且M2[r](t, 1-t; μ(x1), μ(x2))∈[min{μ(x1), μ(x2)}, max{μ(x1), μ(x2)}]⊆BI.

u=μ(x)是A上的MA-凸函数,所以

$ \begin{array}{l} \mu \left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right) \le \\ \;\;\;\;\;\;\;\;\;{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;\mu \left( {{x_1}} \right),\mu \left( {{x_2}} \right)} \right), \end{array} $

y=f(u)为I上严格递增的AM-凸函数,所以

$ \begin{array}{l} f\left( {\mu \left( {{\rm{M}}_2^{\left[ r \right]}\left( {t,1 - t;{x_1},{x_2}} \right)} \right)} \right) \le f\left( {{\rm{M}}_2^{\left[ 1 \right]}\left( {t,1 - t;} \right.} \right.\\ \;\;\;\;\;\;\;\left. {\left. {\mu \left( {{x_1}} \right),\mu \left( {{x_2}} \right)} \right)} \right) \le {\rm{M}}_2^{\left[ p \right]}\left( {t,1 - t;f\left( {\mu \left( {{x_1}} \right)} \right),} \right.\\ \;\;\;\;\;\;\;\left. {f\left( {\mu \left( {{x_2}} \right)} \right)} \right), \end{array} $

y=f(μ(x))是A上的MM-凸函数.

类似地有:

定理13    设A, IR+BIf:IR+, μ:AB,则

(ⅰ)若y=f(u)为I上严格递增的GM-凸函数,u=μ(x)为A上的MG-凸函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅱ)若y=f(u)为I上严格递减的GM-凸函数,u=μ(x)为A上的MG-凹函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅱ)若y=f(u)为I上严格递增的GM-凹函数,u=μ(x)为A上的MG-凹函数,则y=f(μ(x))为A上的MM-凹函数;

(ⅳ)若y=f(u)为I上严格递减的GM-凹函数,u=μ(x)为A上的MG-凸函数,则y=f(μ(x))为A上的MM-凹函数.

定理14    设A, IR+BIf:IR+, μ:AB,则

(ⅰ)若y=f(u)为I上严格递增的HM-凸函数,u=μ(x)为A上的MH-凸函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅱ)若y=f(u)为I上严格递减的HM-凸函数,u=μ(x)为A上的MH-凹函数,则y=f(μ(x))为A上的MM-凸函数;

(ⅲ)若y=f(u)为I上严格递增的HM-凹函数,u=μ(x)为A上的MH-凹函数,则y=f(μ(x))为A上的MM-凹函数;

(ⅳ)若y=f(u)为I上严格递减的HM-凹函数,u=μ(x)为A上的MH-凸函数,则y=f(μ(x))为A上的MM-凹函数.

3 MM-凸函数的Jensen型不等式

定理15    设IR+,若f(x)是区间I上的MM-凸(凹)函数,则∀xiI和∀ti∈[0, 1](i=1, 2, …, n)且$\sum\limits_{i = 1}^n {{t_i}} = 1$,有

$ \begin{array}{l} f\left( {{\rm{M}}_n^{\left[ r \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{x_1},{x_2}, \cdots ,{x_n}} \right)} \right) \le \left( \ge \right)\\ \;\;\;\;\;\;\;\;{\rm{M}}_n^{\left[ p \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};f\left( {{x_1}} \right),f\left( {{x_2}} \right), \cdots ,f\left( {{x_n}} \right)} \right). \end{array} $

证明    令g(x)=[f(x)]p(xI),因为f(x)是I上的MM-凸函数,所以,当p>0时,由定理3(ⅰ)知,g(x)是I上的MA-凸函数,因此有g(x)在I上的Jensen型不等式[17]

$ \begin{array}{l} g\left( {{\rm{M}}_n^{\left[ r \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{x_1},{x_2}, \cdots ,{x_n}} \right)} \right) \le \\ {\rm{M}}_n^{\left[ 1 \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};g\left( {{x_1}} \right),g\left( {{x_2}} \right), \cdots ,g\left( {{x_n}} \right)} \right)\\ \Rightarrow {\left[ {f\left( {{\rm{M}}_n^{\left[ r \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{x_1},{x_2}, \cdots ,{x_n}} \right)} \right)} \right]^p} \le \\ {\rm{M}}_n^{\left[ 1 \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{{\left( {f\left( {{x_1}} \right)} \right)}^p},{{\left( {f\left( {{x_2}} \right)} \right)}^p}, \cdots ,{{\left( {f\left( {{x_n}} \right)} \right)}^p}} \right)\\ \Rightarrow f\left( {{\rm{M}}_n^{\left[ r \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{x_1},{x_2}, \cdots ,{x_n}} \right)} \right) \le \\ {\left[ {{\rm{M}}_n^{\left[ 1 \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};{{\left( {f\left( {{x_1}} \right)} \right)}^p},{{\left( {f\left( {{x_2}} \right)} \right)}^p}, \cdots ,{{\left( {f\left( {{x_n}} \right)} \right)}^p}} \right)} \right]^{\frac{1}{p}}} = \\ {\rm{M}}_n^{\left[ p \right]}\left( {{t_1},{t_2}, \cdots ,{t_n};f\left( {{x_1}} \right),f\left( {{x_2}} \right), \cdots ,f\left( {{x_n}} \right)} \right). \end{array} $

p<0时,类似可证结论成立.

f(x)是区间I上MM-凹函数的情形同理可证.

定理15的一个等价形式:

定理16    设IR+, f(x)是I上的MM-凸(凹)函数,则∀xiI及∀qiR+(i=1, 2, …, n),有

$ \begin{array}{l} f\left[ {{\rm{M}}_n^{\left[ r \right]}\left[ {\frac{{{q_1}}}{{{q_1} + {q_2} + \cdots + {q_n}}},\frac{{{q_2}}}{{{q_1} + {q_2} + \cdots + {q_n}}}, \cdots ,} \right.} \right.\\ \left. {\left. {\;\;\;\;\;\;\;\;\frac{{{q_n}}}{{{q_1} + {q_2} + \cdots + {q_n}}};{x_1},{x_2}, \cdots ,{x_n}} \right]} \right] \le \left( \ge \right)\\ \;\;\;\;\;\;\;\;{\rm{M}}_n^{\left[ p \right]}\left[ {\frac{{{q_1}}}{{{q_1} + {q_2} + \cdots + {q_n}}},\frac{{{q_2}}}{{{q_1} + {q_2} + \cdots + {q_n}}}, \cdots ,} \right.\\ \left. {\;\;\;\;\;\;\;\;\frac{{{q_n}}}{{{q_1} + {q_2} + \cdots + {q_n}}};f\left( {{x_1}} \right),f\left( {{x_2}} \right), \cdots ,f\left( {{x_n}} \right)} \right]. \end{array} $

进一步,当q1=q2=…=qn时,有

推论    设IR+f(x)是IR+上的MM-凸(凹)函数,对∀xiI(i=1, 2, …, n),有

$ \begin{array}{l} f\left( {{\rm{M}}_n^{\left[ r \right]}\left( {\frac{1}{n},\frac{1}{n}, \cdots ,\frac{1}{n};{x_1},{x_2}, \cdots ,{x_n}} \right)} \right) \le \left( \ge \right)\\ \;\;\;\;\;\;\;\;{\rm{M}}_n^{\left[ p \right]}\left( {\frac{1}{n},\frac{1}{n}, \cdots ,\frac{1}{n};f\left( {{x_1}} \right),f\left( {{x_2}} \right), \cdots ,f\left( {{x_n}} \right)} \right). \end{array} $
参考文献
[1] 匡继昌. 常用不等式[M]. 第4版. 济南: 山东科学技术出版社, 2010: 53-63.
KUANG J C. Applied Inequalities[M]. 4th ed. Jinan: Shandong Science and Technology Press, 2010: 53-63.
[2] 王伯英. 控制不等式基础[M]. 北京: 北京师范大学出版社, 1990: 35-54.
WANG B Y. Fundamental of Majorization Inequality[M]. Beijing: Beijing Normal University Press, 1990: 35-54.
[3] 张小明. 几何凸函数[M]. 合肥: 安徽大学出版社, 2004: 6-18.
ZHANG X M. Geometric Convex Function[M]. Hefei: Anhui University Press, 2004: 6-18.
[4] 吴善和. 调和凸函数与琴生型不等式[J]. 四川师范大学学报:自然科学版, 2004, 27(24): 382–386.
WU S H. Harmonic convex function and Jensen type inequality[J]. Journal of Sichuan Normal University:Natural Science, 2004, 27(24): 382–386.
[5] 吴善和. 平方凸函数与琴生型不等式[J]. 首都师范大学学报:自然科学版, 2005, 26(1): 16–21.
WU S H. Square convex function and similar Jensen's inequality[J]. Journal of Capital Normal University:Natural Science Edition, 2005, 26(1): 16–21.
[6] 宋振云, 陈少元. 调和平方凸函数及其Jensen型不等式[J]. 首都师范大学学报:自然科学版, 2015, 36(3): 7–14.
SONG Z Y, CHEN S Y. Harmonic square convex function and similar Jensen's inequality[J]. Journal of Capital Normal University:Natural Science Edition, 2015, 36(3): 7–14.
[7] 席博彦, 包图雅. 关于r-平均凸函数的一些性质[J]. 数学的实践与认识, 2008, 38(12): 113–119.
XI B Y, BAO T Y. On some properties of r-mean convex function[J]. Mathematics in Practice and Theory, 2008, 38(12): 113–119.
[8] 张孔生, 刘敏. P方凸函数及其Jensen型和Rado型不等式[J]. 阜阳师范学院学报:自然科学版, 2005, 22(2): 18–20.
ZHANG K S, LIU M. Power P convex function and Jensen type and Rado type inequality[J]. Journal of Fuyang Teachers College:Natural Science, 2005, 22(2): 18–20.
[9] 吴善和. rP-凸函数与琴生型不等式[J]. 数学的实践与认识, 2005, 35(3): 220–228.
WU S H. rP-convex function and Jensen type inequality[J]. Mathematics in Practice and Theory, 2005, 35(3): 220–228.
[10] 吴善和. GA-凸函数与琴生型不等式[J]. 贵州师范大学学报:自然科学版, 2004, 22(2): 52–55.
WU S H. GA-convex function and Jensen type inequality[J]. Journal of Guizhou Normal University:Natural Science, 2004, 22(2): 52–55.
[11] 陈少元. GH-凸函数及其Jensen型不等式[J]. 首都师范大学学报:自然科学版, 2013, 34(5): 1–5.
CHEN S Y. GH-convex function and Jensen type inequality[J]. Journal of Capital Normal University:Natural Science Edition, 2013, 34(5): 1–5.
[12] 宋振云, 陈少元. GM-凸函数及其Jensen型不等式[J]. 数学的实践与认识, 2014, 44(20): 280–287.
SONG Z Y, CHEN S Y. GM-convex function and Jensen type inequality[J]. Mathematics in Practice and Theory, 2014, 44(20): 280–287.
[13] 吴善和. 对数凸函数与琴生型不等式[J]. 高等数学研究, 2004, 7(5): 61–64.
WU S H. Logarithmic convex function and Jensen type inequality[J]. Studies in College Mathematics, 2004, 7(5): 61–64.
[14] 陈少元. AH-凸函数及其应用[J]. 湖北职业技术学院学报, 2013, 16(2): 106–109.
CHEN S Y. AH-convex function and its application[J]. Journal of Hubei Polytechnic Institute, 2013, 16(2): 106–109.
[15] 宋振云. AR-凸函数及其Jensen型不等式[J]. 安徽师范大学学报:自然科学版, 2015, 38(4): 331–336.
SONG Z Y. AR-convex function and Jensen type inequality[J]. Journal of Anhui Normal University:Natural Science, 2015, 38(4): 331–336.
[16] 宋振云. AM-凸函数及其Jensen型不等式[J]. 淮北师范大学学报:自然科学版, 2015, 36(1): 1–7.
SONG Z Y. AM-convex function and Jensen type inequality[J]. Journal of Huaibei Normal University:Natural Science, 2015, 36(1): 1–7.
[17] 陈少元, 宋振云. HG-凸函数及其Jensen型不等式[J]. 数学的实践与认识, 2013, 43(2): 257–264.
CHEN S Y, SONG Z Y. HG-convex function and Jensen type inequality[J]. Mathematics in Practice and Theory, 2013, 43(2): 257–264.
[18] 宋振云. HA-凸函数及其Jensen型不等式[J]. 德州学院学报, 2014, 30(4): 16–21.
SONG Z Y. HA-convex function and Jensen type inequality[J]. Journal of Dezhou University, 2014, 30(4): 16–21.
[19] 宋振云. HM-凸函数及其Jensen型不等式[J]. 沈阳师范大学学报:自然科学版, 2015, 33(1): 23–27.
SONG Z Y. HM-convex function and Jensen type inequality[J]. Journal of Shenyang Normal University:Natural Science, 2015, 33(1): 23–27.
[20] 张孔生, 万建平. P-凸函数及其性质[J]. 纯粹数学与应用数学, 2007, 23(1): 130–133.
ZHANG K S, WAN J P. P-convex functions and their properties[J]. Pure and Applied Mathematies, 2007, 23(1): 130–133.
[21] 宋振云, 陈少元. MG-凸函数及其Jensen型不等式[J]. 山东师范大学学报:自然科学版, 2014, 29(4): 56–60.
SONG Z Y, CHEN S Y. MG-convex function and Jensen type inequality[J]. Journal of Shandong Normal University:Natural Science, 2014, 29(4): 56–60.
[22] 宋振云. MH-凸函数及其Jensen型不等式[J]. 杭州师范大学学报:自然科学版, 2015, 14(2): 156–160.
SONG Z Y. MH-convex function and Jensen type inequality[J]. Journal of Hangzhou Normal University:Natural Science, 2015, 14(2): 156–160.