文章快速检索     高级检索
  浙江大学学报(理学版)  2017, Vol. 44 Issue (3): 287-291  DOI:10.3785/j.issn.1008-9497.2017.03.007
0

引用本文 [复制中英文]

杨小娟, 韩晓玲. 一类分数阶非线性微分包含初值问题的可解性[J]. 浙江大学学报(理学版), 2017, 44(3): 287-291. DOI: 10.3785/j.issn.1008-9497.2017.03.007.
[复制中文]
YANG Xiaojuan, HAN Xiaoling. The solvability of Cauchy problem for nonlinear fractional differential inclusions[J]. Journal of Zhejiang University(Science Edition), 2017, 44(3): 287-291. DOI: 10.3785/j.issn.1008-9497.2017.03.007.
[复制英文]

基金项目

国家自然科学基金资助项目(11561063)

作者简介

杨小娟(1992-), ORCID:http://orcid.org/0000-0002-7738-9021, 女, 硕士研究生, 主要从事常微分方程边值问题研究, E-mail:18394172453@163.com

通信作者

韩晓玲, ORCID:http://orcid.org/0000-0002-0670-9657, E-mail:hanxiaoling9@163.com.

文章历史

收稿日期:2016-05-25
一类分数阶非线性微分包含初值问题的可解性
杨小娟 , 韩晓玲     
西北师范大学 数学与统计学院, 甘肃 兰州, 730070
摘要: 在新的分数阶导数定义下,运用Bohnenblust-Karlin不动点定理并结合上下解方法研究了一类分数阶非线性微分包含初值问题$\left\{ \begin{gathered} {x^{\left( a \right)}}\left( t \right) \in F\left( {t,x\left( t \right)} \right),\;\;\;t \in J = \left[ {a,b} \right],\;a > 0, \hfill \\ x\left( a \right) = {x_0} \hfill \\ \end{gathered} \right. $的可解性.其中,FJ×R→2R是一个L1-Carathéodary函数,xαt)表示xt上的α阶导数,α∈(0,1].最后,分别给出了当集值映射F关于第二变量x次线性和至多线性增长时解的存在结果.
关键词: 微分包含    分数阶导数    可解性    Bohnenblust-Karlin不动点定理    
The solvability of Cauchy problem for nonlinear fractional differential inclusions
YANG Xiaojuan , HAN Xiaoling     
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract: In this paper, using Bohnenblust-Karlin's fixed point theorem and combining the upper and lower solution method, we mainly study the solvability of Cauchy problem for nonlinear fractional differential inclusions $\left\{ \begin{gathered} {x^{\left( a \right)}}\left( t \right) \in F\left( {t,x\left( t \right)} \right),\;\;\;t \in J = \left[ {a,b} \right],\;a > 0, \hfill \\ x\left( a \right) = {x_0} \hfill \\ \end{gathered} \right. $ where F:J×R→2R is L1-Carathéodary function, x(α)(t) denotes the conformable fractional derivative of x at t of order α, α∈(0, 1]. By applying this theorem, we arrive at two existence results when the multi-valued nonlinearity F has sub-linear or linear growth about the second variable.
Key words: differential inclusions    fractionl derivatives    existence of solutions    Bohnenblust-Karlin's fixed point theorem    
0 引言

微分包含是微分方程与集值分析的交叉学科, 在力学、工程学以及优化与控制理论中有着广泛的应用[1-2].在描述物理、力学、工程、微观经济学等系统时一般都用确定的微分方程模型, 但在实际生活及科学实践中, 确定的模型通常不适合描述某些动态系统.例如, 通常假定微分方程x′(t)=f(t, x(t))的右端为连续函数, 但实际中往往难以保证, 若将f(t, x(t))嵌入到集值映射F(t, x(t))中, 可将其转化为研究微分包含x′(t)∈F(t, x(t)).如文献[2]研究了一阶微分包含周期边值问题

$ \left\{ \begin{array}{l} y'\left( t \right) \in F\left( {t,y\left( t \right)} \right),\;\;\;\;\;t \in J = \left[ {0,T} \right],\\ y\left( 0 \right) = y\left( T \right) \end{array} \right. $

的可解性.

分数阶微分方程被广泛应用于解决各领域的工程问题, 如光学、流变学、新材料力学系统等[3-5].此外, 在生物学、最优控制等领域亦通过建立微分包含模型对一些实际问题进行理论分析和研究.分数阶微分包含越来越受国内外学者的关注, 并取得了一些很好的成果[6].文献[7]介绍了一种新的局部分数阶导数的定义, 称为一致分数阶导数, 较Riemann-LiouvilleCaputo这2种分数阶导数具有更好的性质.文献[8]证明了一致分数阶导数的链式法则、Gronwall不等式以及Laplace变换.文献[9]给出了分数阶导数的一些有意义的计算方法.文献[10]通过定义一个tube解并运用Schauder不动点定理研究了分数阶Cauchy问题

$ \left\{ \begin{array}{l} {x^{\left( \alpha \right)}}\left( t \right) = f\left( {t,x\left( t \right)} \right),\;\;\;t \in \left[ {a,b} \right],a > 0,\\ x\left( a \right) = {x_0} \end{array} \right. $

的可解性.

受以上研究的启发, 在新的一致分数阶导数的定义下, 运用集值映射的不动点定理研究了微分包含问题

$ \left\{ \begin{array}{l} {x^{\left( \alpha \right)}}\left( t \right) \in F\left( {t,x\left( t \right)} \right),t \in J = \left[ {a,b} \right],a > 0,\\ x\left( a \right) = {x_0} \end{array} \right. $ (1)

的可解性,并通过定义问题(1) 的上下解得到了该问题解的最佳逼近.

1 预备知识

J=[a, b], C(J)为定义在J上的连续实值函数构成的Banach空间, 其范数为‖x=sup{|x(t)|tJ}.设Ck(J)为k次连续可微实值函数构成的Banach空间, 其范数为‖xck=max{‖x, …, ‖x(k)}.设L1(J, R)为定义在J上满足$ \int_J {\left| {x\left( t \right)} \right|} {\text{d}}t < + \infty $可测函数构成的Banach空间, 其范数为$ {\left\| x \right\|_{{L^1}}} = \int_J {\left| {x\left( t \right)} \right|} {\text{d}}t$.设AC(X)表示X的绝对连续函数全体, CC(X)表示X的非空凸的紧子集全体, BCC(X)表示X的有界非空凸的紧子集全体.

设(X, |·|)是Banach空间, 若对任意的xX, G(x)是凸(闭)值的, 则集值映射G:X→2R是凸(闭)值的.

设任意的B$\subset $X为有界集, 若$G\left( B \right) = \mathop \cup \limits_{x \in B} G\left( x \right) $X上有界, 则称GX上是有界的.

设对任意的x0X, G(x0)是X的非空闭子集, 且对每个包含G(x0)的N$\subset $X, 存在x0的开邻域M使得G(M)$\subseteq $N, 则称G是上半连续的; 设B$\subset $X为有界集, 若G(B)是相对紧的, 则称G是全连续的; 设集值映射G是非空紧的全连续映射, 则G是上半连续的充要条件是G有闭图像(即xnx*, hnh*, hnG(xn)$\Rightarrow $h*G(x*)).

若存在xX使得xG(x), 则G有一个不动点.

以下是一致分数阶导数和微分包含的一些相关结论, 详见文献[6-9, 11-15].

定义1(一致分数阶导数) 设α∈(0, 1]且f:[0, ∞)→R, f的一致分数阶导数可定义为

$ {T_\alpha }\left( f \right)\left( t \right): = \mathop {\lim }\limits_{\varepsilon \to 0} \frac{{f\left( {t + \varepsilon {t^{1 - \alpha }}} \right) - f\left( t \right)}}{\varepsilon },t > 0, $

常用fα表示.如果Tα(f)存在, 则定义

$ {f^\alpha }\left( 0 \right): = \mathop {\lim }\limits_{t \to {0^ + }} {f^\alpha }\left( t \right). $

定义2(一致分数次积分) 设α∈(0, 1]且f:[0, ∞)→Rf在[a, t]上的α次分数积分可定义为

$ I_\alpha ^af\left( t \right): = \int_a^t {\frac{{f\left( \tau \right)}}{{{\tau ^{1 - \alpha }}}}{\rm{d}}\tau } . $

命题1 设0 < a < b, 用αJab[f]表示$\int_a^b {\frac{{f\left( t \right)}}{{{t^{1-a}}}}} {\text{d}}t $的值, 即αJab[f]:=Iαa(f)(b).

命题2 设fL1([a, b], R), 0 < a < b, 则|αJab[f]|≤αJab[|f|].

命题3 设rCα([a, b], R), 0 < a < b, 在{t∈[a, b]:r(t)>0}上有rα(t) < 0.若r(a)≤0, 则对任意t∈[a, b], 有r(t)≤0.

定义3 集值映射F:J×R→2R若满足:

(ⅰ)对任意的xR, 有tF(t, x)是可测的;

(ⅱ)对几乎处处的tJ, 有xF(t, x)是上半连续的;

(ⅲ)对任意的k>0, 存在hkL1(J, R+), 使得‖F(t, x)‖=sup{|v|:vF(t, x)}≤hk(t), 其中|x|≤k, tJ

则其是L1-Carathéodary函数.

引理1[10](Bohenblust-Karlin不动点定理) 设X是Banach空间, DX的非空有界闭凸子集, 设H:D→BCC(X), 使得H(D)$\subset $D, 且$ \overline {H\left( D \right)} $是紧的, 则H有一个不动点.

引理2[12] 设I是紧的实区间,且X是Banach空间, 令F:I×X→CC(X).对任意的yX, (t, x)→F(t, x)关于t可测, 且对几乎处处的tI, (t, x)→F(t, x)关于x是上半连续的.对于每个不动点xC[J, R], 定义SF, x={vL1(J, R):v(t)∈F(t, x(t)), tJ}≠ $\emptyset $, 且设Γ:L1(I, X)→C(I, X)是线性连续映射, 则算子Γ$ \circ $SF:C(I, X)→CC(I, X), x→(Γ$ \circ $SF)(x):=Γ(SF, x)是C(I, XC(I, X)的闭图像算子.

引理3[16] 若gL1(J, R), 则函数x:JR,

$ x\left( t \right): = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha J_a^t\left[ {\frac{{g\left( s \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right) $

$ \left\{ \begin{array}{l} {x^\alpha }\left( t \right) + \frac{1}{{{a^\alpha }}}x\left( t \right) = g\left( t \right),\;\;t \in \left[ {a,b} \right],\;\;\;a > 0,\\ x\left( a \right) = {x_0} \end{array} \right. $ (2)

的解.

定义4 函数x∈AC(J, R)是式(1) 的解, 如果存在vF(t, x(t)), 对任意的tJ, 使得xα(t)=v(t)且x(a)=x0.

2 主要结果及其证明

定义5 设φ∈AC(J, R), 若存在v1L1(J, R),满足

$ \left\{ \begin{array}{l} {v_1}\left( t \right) \in F\left( {t,\varphi \left( t \right)} \right),\;\;\;t \in J,a > 0,\\ {\varphi ^\alpha }\left( t \right) \le {v_1}\left( t \right),\;\;\;\;\varphi \left( a \right) \le {x_0}, \end{array} \right. $

则称φ(t)是式(1) 的下解.

定义6 设ψ∈AC(J, R),若存在v2L1(J, R), 满足

$ \left\{ \begin{array}{l} {v_2}\left( t \right) \in F\left( {t,\psi \left( t \right)} \right),\;\;\;t \in J,a > 0,\\ {\psi ^\alpha }\left( t \right) \geqslant {v_2}\left( t \right),\;\;\;\;\psi \left( a \right) \geqslant {x_0}, \end{array} \right. $

则称ψ(t)是式(1) 的上解.

定理1 设F:J×R→CC(R)是L1-Carathéodary集值映射, 若存在φ, ψ∈AC(J, R), 分别是式(1) 的下解与上解, 其中φψ.令E={(t, x)∈J×R|φ(t)≤x(t)≤ψ(t)}, 则对任意的tJ, 式(1) 至少有1个解xE满足φ(t)≤x(t)≤ψ(t).

证明 考虑辅助问题

$ \left\{ \begin{array}{l} {x^\alpha }\left( t \right) + \frac{1}{{{a^\alpha }}}x\left( t \right) \in F\left( {t,x\left( t \right)} \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x\left( t \right)} \right),\;\;\;t \in J,\\ x\left( a \right) = {x_0},\;\;\;a > 0, \end{array} \right. $ (3)

其中,γ:J×RR定义为

$ \gamma \left( {t,x\left( t \right)} \right) = \left\{ \begin{array}{l} \varphi \left( t \right),\;\;\;\;\varphi \left( t \right) > x\left( t \right),\\ x\left( t \right),\;\;\;\;\;\varphi \left( t \right) \le x\left( t \right) \le \psi \left( t \right),\\ \psi \left( t \right),\;\;\;\;\;\psi \left( t \right) < x\left( t \right). \end{array} \right. $

F是有非空闭凸值的L1-Carathéodary集值映射, 可得存在ΦL1(J, R+), 使得$\left\| {F\left( {t, x\left( t \right)} \right) + \frac{1}{{{a^a}}}\gamma \left( {t, x\left( t \right)} \right)} \right\| \leqslant \mathit{\Phi} \left( t \right) + \max \frac{1}{{{a^a}}}\left( {\sup \left| {\varphi \left( t \right)} \right|, \sup \left| {\psi \left( t \right)} \right|} \right), t \in J $.定义算子T:C(J, R)→2C(J, R)

$ \begin{array}{l} Tx\left( t \right): = \left\{ {h \in C\left( {J,R} \right):h\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + } \right.} \right.\\ \;\;\;\;\;\;\;\;\;\;\;\left. {\left. {\alpha \mathscr{J}_a^t\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right)} \right\}. \end{array} $

只需证明算子T满足引理1的假设条件, 从而可得T有不动点即式(2) 的解.

下面分两部分证明:

第1部分:证明上述定义的算子T有不动点.

i)对每个xC(J), T(x)是凸的.设h, hT(x), 则存在vSF, xvSF, x, 使得

$ \begin{array}{l} h\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right),\\ \overline {h\left( t \right)} = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{\overline {v\left( s \right)} + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). \end{array} $

设0≤λ≤1, 则对每一个t$ \mathscr{J}$, 有

$ \begin{array}{l} \left[ {\lambda h + \left( {1 - \lambda } \right)\bar h} \right]\left( t \right) = \\ \;\;\;\;\;\;\;\lambda {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right) + \\ \;\;\;\;\;\;\;\left( {1 - \lambda } \right){{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}} \times \\ \;\;\;\;\;\;\;\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{\overline {v\left( s \right)} + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right) + \\ \;\;\;\;\;\;\;\alpha \mathscr{J}_a^t\left[ {\frac{{\left( {1 - \lambda } \right)\left( {\overline {v\left( s \right)} + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right] = \\ \;\;\;\;\;\;\;{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{\lambda \left( {v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}} + } \right.} \right.\\ \;\;\;\;\;\;\;\left. {\left. {\frac{{\left( {1 - \lambda } \right)\left( {\overline {v\left( s \right)} + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). \end{array} $

因为F有凸值, 所以SF, x是凸的, 从而可得λh+(1-λ)hT(x).

ii)对任意常数r>0, 令Br={xC(J):‖x‖≤r}, 则BrC(J)上的有界闭凸集.下证存在r>0, 使得T(Br)$\subseteq $Br.

假设存在xrBr, hrT(xr)与vSF, x, 使得

$ h\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{\pi }{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). $

对任意的tJ, 有

$ \begin{array}{l} \left| {{h_r}\left( t \right)} \right| = \\ \;\;\;\;\left| {{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,y} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right)} \right| \le \\ \;\;\;\;{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}\left| {{x_0}} \right| + {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\alpha \mathscr{J}_a^t \times } \right.\\ \;\;\;\;\left. {\left[ {\frac{{\left| {v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,y} \right)} \right|}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right) \le \frac{K}{C}\left[ {\mathit{\Phi }\left( t \right) } \right.+\\ \;\;\;\;\left. {\max \frac{1}{{{a^\alpha }}}\left( {\sup \left| {\varphi \left( t \right)} \right|,\sup \left| {\psi \left( t \right)} \right|} \right)} \right]\frac{{{b^\alpha } - {a^\alpha }}}{\alpha } + \\ \;\;\;\;K{{\rm{e}}^{\frac{1}{\alpha }}}\left| {{x_0}} \right|. \end{array} $

其中,$K: = \mathop {\max }\limits_{a \leqslant s \leqslant b} \left\{ {{e^{-\frac{1}{a}{{\left( {\frac{s}{a}} \right)}^a}}}} \right\}, C: = \mathop {\min }\limits_{a \leqslant s \leqslant b} \left\{ {{e^{-\frac{1}{a}{{\left( {\frac{s}{a}} \right)}^a}}}} \right\} $.

$ \begin{array}{l} 令\;\;r = K{{\rm{e}}^{\frac{1}{\alpha }}}\left| {{x_0}} \right| + \frac{K}{C}\left[ {\mathit{\Phi }\left( t \right) } \right.+ \\ \;\;\;\;\;\;\;\;\;\left. {\max \frac{1}{{{a^\alpha }}}\left( {\sup \left| {\varphi \left( t \right)} \right|,\sup \left| {\psi \left( t \right)} \right|} \right)} \right]\frac{{{b^\alpha } - {a^\alpha }}}{\alpha }, \end{array} $

则‖hr‖≤r, 即存在r>0, 使得T(Br)$ \subseteq $Br.

iii)T(Br)是等度连续的.设t1, t2J, t1t2, 设xBrhT(x), 则存在vSF, x, 使得对任意tJ, 有

$ h\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). $

因此当t2t1时,有

$ \begin{array}{l} \left| {h\left( {{t_2}} \right) - h\left( {{t_1}} \right)} \right| \le \left| {{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_2}}}{a}} \right)}^\alpha }}}{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} - {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_1}}}{a}} \right)}^\alpha }}}{{\rm{e}}^{\frac{1}{\alpha }}}{x_0}} \right| + \\ \;\;\;\;\;\;\;\left| {{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_2}}}{a}} \right)}^\alpha }}}\alpha \mathscr{J}_a^{{t_2}}\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {{t_2},x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right] - } \right.\\ \;\;\;\;\;\;\;\left. {{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_1}}}{a}} \right)}^\alpha }}}\mathscr{J}_a^{{t_1}}\left[ {\frac{{v\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {{t_1},x} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right| \le \\ \;\;\;\;\;\;\;{{\rm{e}}^{\frac{1}{\alpha }}}\left| {{x_0}} \right|\left| {{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_2}}}{a}} \right)}^\alpha }}} - {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_1}}}{a}} \right)}^\alpha }}}} \right| + \\ \frac{K}{C}\left[ {\mathit{\Phi }\left( t \right) + \max \frac{1}{{{a^\alpha }}}\left( {\sup \left| {\varphi \left( t \right)} \right|,\sup \left| {\psi \left( t \right)} \right|} \right)} \right] \times \\ \frac{{\left| {t_2^\alpha - t_1^\alpha } \right|}}{\alpha } \to 0. \end{array} $

由i)~iii)知T是紧值映射.

iv)T有闭图像.设xnx*, hnT(xn), 且hnh*, 下证h*T(x*).

hnT(xn)可知,存在vnSF, xn, 使得

$ \begin{array}{l} {h_n}\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_1}}}{a}} \right)}^\alpha }}} \times \\ \;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{{v_n}\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,{x_n}} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). \end{array} $

需证存在v*SF, x*, 使得对任意的tJ,

$ \begin{array}{l} {h_ * }\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{{{t_1}}}{a}} \right)}^\alpha }}} \times \\ \;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{{v_*}\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,{x_*}} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). \end{array} $

因为xnx*, hnh*, 且r连续, 则当n→∞时,

$ \begin{array}{l} \left\| {\left( {{h_n}\left( t \right) - {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{\gamma \left( {t,{x_n}} \right)}}{{{a^\alpha }{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right)} \right) - } \right.\\ \left. {\left( {{h_*}\left( t \right) - {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{\gamma \left( {t,{x_*}} \right)}}{{{a^\alpha }{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right)} \right)} \right\| \to 0. \end{array} $

考虑线性连续算子Γ:L1(J, R)→C(J, R),

$ v \to \Gamma \left( v \right)\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{v\left( s \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). $

命题4 Γ$ \circ $SF是闭图像算子, 而且有

$ \begin{array}{l} \left( {{h_n}\left( t \right) - {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}}\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{v\left( n \right)}}{{{a^\alpha }{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right)} \right) \in \\ \;\;\;\;\;\;\;\Gamma \left( {{S_{F,{x_n}}}} \right). \end{array} $

因为yn→y*, 由命题1知, 对某些v*SF, x*, 有

$ \begin{array}{l} {h_*}\left( t \right) = {{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{t}{a}} \right)}^\alpha }}} \times \\ \;\;\;\;\;\;\;\;\;\;\;\left( {{{\rm{e}}^{\frac{1}{\alpha }}}{x_0} + \alpha \mathscr{J}_a^t\left[ {\frac{{{v_*}\left( s \right) + \frac{1}{{{a^\alpha }}}\gamma \left( {t,{x_*}} \right)}}{{{{\rm{e}}^{ - \frac{1}{\alpha }{{\left( {\frac{s}{a}} \right)}^\alpha }}}}}} \right]} \right). \end{array} $

结合i)~iv), T满足命题3的假设, 从而T有不动点,即式(3) 的解.

第2部分:证明式(3) 的任意解x(t):φ(t)≤x(t)≤ψ(t).

先证φ(t)≤x(t).反设φ(t)不全小于x(t), 则存在tJ, 使得φ(t)>x(t).则由文献[16]可知, 存在v(t)=xα(t), v1(t)=φα(t)且v1(t)≤v(t).令h(t)=φ(t)-x(t), 即存在t0J, 使得$h\left( {{t_0}} \right) = \mathop {\max }\limits_{t \in \left[{a, b} \right]} \left( {\varphi \left( t \right) -x\left( t \right)} \right) = \varphi \left( {{t_0}} \right) -x\left( {{t_0}} \right) > 0 $.因为

$ \begin{array}{l} {h^\alpha }\left( {{t_0}} \right) = {\left( {\varphi \left( {{t_0}} \right) - x\left( {{t_0}} \right)} \right)^\alpha } = {\varphi ^\alpha }\left( {{t_0}} \right) - {x^\alpha }\left( {{t_0}} \right) \le \\ \;\;\;\;\;\;\;\;\;\;\;\;\;{v_1}\left( t \right) - v\left( t \right) \le 0, \end{array} $

h(a)=φ(a)-x(a)≤x0-x0=0, 即h(a)≤0, 由命题3, 任意tJ, h(t)≤0, 与h(t)>0矛盾, 从而φ(t)≤x(t), tJ.

同理可证x(t)≤ψ(t).

综上可得, 式(3) 至少有1个解xACα(J, R), 使得对任意tJ, 有φ(t)≤x(t)≤ψ(t), 而此时γ(t, x(t))=x(t), 式(3) 即为式(1), 定理得证.

推论1(次线性增长条件) 假设F:J×R→BCC(R), (t, x)→F(t, x)关于t可测、关于x上半连续, 且存在函数a(t), b(t)∈L1(J, R+), μ∈[0, 1], 使得

$ \left\| {F\left( {t,x} \right)} \right\| \le a\left( t \right){\left| x \right|^\mu } + b\left( t \right),\;\;\;\;\left( {t,x} \right) \in J \times R, $

则式(1) 至少有1个解.

证明 在该假设条件下, 取hk(t)=a(t)|x|μ+b(t), 由定理1即可证得.

推论2(至多线性增长条件) 假设F:J×R→BCC(R), (t, x)→F(t, x)关于t可测、关于x上半连续, 且存在函数a(t), b(t)∈L1(J, R+), 使得

$ \left\| {F\left( {t,x} \right)} \right\| \le a\left( t \right)\left| x \right| + b\left( t \right),\;\;\;\;\left( {t,x} \right) \in J \times R, $

则式(1) 至少有1个解.

证明 在该假设条件下, 取hk(t)=a(t)|x|+b(t), 由定理1即可证得.

参考文献
[1] ABBASBANDY S, NIETO J J, ALAVI M. Tuning of reachable set in one dimensional fuzzy differential inclusions[J]. Chaos Solitons Fractals, 2005, 26: 1337–1341. DOI:10.1016/j.chaos.2005.03.018
[2] BENCHONRA M, NTOUYAS S K. On first order differential inclusions with periodic boundary conditions[J]. Math Inequal Appl, 2005, 8(1): 71–78.
[3] LAKSHMIKANTHAM V, VATSALA A S. Basic theory of fractional differential equations[J]. Nonlinear Analysis, 2008, 69(18): 2677–2682.
[4] HENDERSON J, OUAHAB A. Fractional functional differential inclusions with finite delay[J]. Nonlinear Analysis, 2009, 70(5): 2091–2105. DOI:10.1016/j.na.2008.02.111
[5] BENCHOHRA M, HENDERSON J, NTOUYAS S K, et al. Existence results for fractional functional differential inclusions with infinite delay and application to control theory[J]. Fractional Calculus and Applied Analysis, 2008, 11(1): 35–36.
[6] CHENG Y, ZHU G, MARICHEV O I. Existence of solutions to fractional differential equations[J]. Bull Math Anal Appl, 2015, 310(1): 26–29.
[7] KHALIL R, AI HORANI M, YOUSEF A, et al. A new definition of fractional derivative[J]. J Comput Appl Math, 2014, 264: 65–70. DOI:10.1016/j.cam.2014.01.002
[8] CHANG Y K, NIETO J J. Some new existence results for fractional differential inclusions with boundary conditions[J]. Math Comput Modelling, 2009, 49: 605–609. DOI:10.1016/j.mcm.2008.03.014
[9] SAMKO S G, KIBAS A A, MARICHEV O I. Fractional Integrals and Derivatives:Theory and Applications[M]. Yverdon: Gordon and Breach Science Publisher, 1993.
[10] BOHNENBLUST H F, KARLIN S. On a Theorem of Ville, Contributions to Theory of Games[M]. Princeton: Princeton University Press, 1950: 155-160.
[11] CHUNG W S. Fractional Newton mechanics with conformable fractional derivative[J]. J Comput Appl Math, 2015, 290: 150–158. DOI:10.1016/j.cam.2015.04.049
[12] LASOTA A, OPIAL Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations[J]. Bull Acad Pol Sci Ser Sci Math Astronom Phys, 1965(13): 781–786.
[13] CHANG Y K, LI W T, NIETO J J. Controllability of evolution differential inclusions in Banach spaces[J]. Nonlinear Anal TMA, 2007, 67: 623–632. DOI:10.1016/j.na.2006.06.018
[14] KATUGAMPOLA U N. A new fractional derivative with classical properties[J/OL].Journal of the American Mathematical Society. [2015-03-19].http://www.researchgate.net/publication/267395593.
[15] FENG Y Q, TONG P. Existence and nonexistence of positive periodic solutions to a differential inclusion[J]. Topological Methods in Nonlinear Analysis, 2013, 42: 449–459.
[16] BAYOUR B, TORRES D F M. Existence of solution to a local fractional nonlinear differential equation[J]. J Comput Appl Math, 2016, 312: 127–133.