浙江大学学报(理学版), 2022, 49(4): 418-421 doi: 10.3785/j.issn.1008-9497.2022.04.004

数学与计算机科学

稳态Q-tensor液晶流的Liouville定理

赖宁安,1, 吴家彦,,2

1.浙江师范大学 数学与计算机科学学院,浙江 金华 321004

2.浙江大学 数学科学学院,浙江 杭州 310027

Liouville theorem for steady Q-tensor system of liquid crystal

LAI Ningan,1, WU Jiayan,,2

1.College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,Zhejiang Province,China

2.School of Mathematical Sciences,Zhejiang University,Hangzhou 310027,China

通讯作者: ORCID:https://orcid.org/0000-0003-2882-9163,E-mail:jiayanwu@zju.edu.cn.

收稿日期: 2020-05-14  

基金资助: 国家自然科学基金资助项目.  201300001

Received: 2020-05-14  

作者简介 About authors

赖宁安(1985—),ORCID:https://orcid.org/0000-0001-6835-8576,男,博士,教授,主要从事非线性偏微分方程解的性态研究. 。

摘要

研究了三维空间中稳态Q-tensor液晶流模型,并用试探函数方法证明了当速度场uL92,(R3)H1·(R3),液晶的张量型序参量QH2(R3)时,该稳态系统只有零平凡解。

关键词: 液晶流 ; Liouville定理 ; Q-tensor

Abstract

We study the Liouville theorem for steady Q-tensor system of liquid crystal in R3. Assuming that uL92,(R3)H1·(R3) and QH2(R3), we show that the steady system admits only trivial solution u=0, Q =0.

Keywords: liquid crystal ; Liouville theorem ; Q-tensor

PDF (395KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赖宁安, 吴家彦. 稳态Q-tensor液晶流的Liouville定理. 浙江大学学报(理学版)[J], 2022, 49(4): 418-421 doi:10.3785/j.issn.1008-9497.2022.04.004

LAI Ningan, WU Jiayan. Liouville theorem for steady Q-tensor system of liquid crystal. Journal of Zhejiang University(Science Edition)[J], 2022, 49(4): 418-421 doi:10.3785/j.issn.1008-9497.2022.04.004

稳态Q-tensor液晶流模型为

uu-μΔu+P=-(QQ)-    λ(|Q|H)+(QΔQ-ΔQQ),u=0,uQ+QΩ-ΩQ-λ|Q|D=ΓH

其中,uP分别表示速度和压力;Q表示液晶的张量型序参量,是一个迹零3×3阶对称矩阵;μ>0Γ-1>0λR分别表示黏性系数、旋转黏度和向列取向参数;H=ΔQ-aQ+bQ2-tr(Q2)3I3×3-cQtr(Q2),常数a,bRc>0(QQ)ij=xiQ:xjQD=12(u+uT)Ω=12(u-uT)(u)ij=xjui,i,j=1,2,3。近年来,稳态Q-tensor液晶流模型备受关注,特别是其弱解和强解的全局存在性1-8

流体力学中的Liouville定理来自稳态N-S系统:

-Δu+uu=-p,    xR3,u=0,u(x)0,    |x|

的解。易知,u=0,p=C式(2)的平凡解。Liouville定理的主要目标是研究在假设条件R3|u|2dx<式(2)是否存在非平凡解。GALDI9证明了如果uL92(R3),那么u0。CHAE10在假设条件ΔuL65(R3)下证明了相同的结论。此后,CHAE等11将假设条件改进为对数加权L92(R3);KOZONO等12进一步将假设条件推广至L92,(R3)。其他保证只有平凡解的条件可参见文献[13-18]。

本文在假设uL92,(R3)H1·(R3)QH2(R3)b2-24ac0下,利用Lorentz空间的一些性质,证明式(1)只存在零平凡解,即u=0,Q=0。这是对GONG等19的研究结果的改进。

定理1 设(u,Q)式(1)的弱解。假设uL92,(R3)H1·(R3)QH2(R3)b2-24ac0,那么u=0,Q=0

注1 易知函数f(x)=|x|-23Lp,(R3),但Lp(R3),因此空间Lp(R3)严格包含于空间Lp,(R3)

1 预备知识

用试验函数法,采用与文献[20]中研究可压缩N-S方程的Liouville定理类似的方法重新估计文献[19]中的所有项。对于μ可测函数,其重排定义为

f*(t)=inf{σm(σ,f)t}

其中, m(σ,f)=μ({x:|f(x)|>σ}),

则Lorentz空间范数定义为

||f||Lp,r=0t1pf*(t)rdtt1r,    1r<,suptt1pf*(t)<,    r=

有关Lorentz空间的详细介绍可参见文献[21]。

引理120 令1<q<,1r,且q,r满足1q'+1q=1,1r'+1r=1则下列算子T是有界双线性算子:

(1) T:Lq,r(R3)×L(R3)Lq,r(R3)

(2) T:Lq,r(R3)×Lq',r'(R3)L1(R3)

(3) T:Lq1,r1(R3)×Lq2,r2(R3)Lq,r(R3),1<q1,q2<1<r1,r2<,满足1q1+1q2=1qr=min{r1,r2}

详细证明可参见文献[22-23]。

引理220 令1q<,1rfLq,r(R3)。对于任意的R>0,设fR(x)=fxR,则有||fR||Lq,r=R3q||f||Lq,r

引理3 若线性算子Tjk定义为

Tjkf=jk(-Δ)-1f

Tjk:Lp,Lp,1<p<为有界算子。

证明 注意到,当p=q时,Lp,p(R3)=Lp(R3)

Tjk可写为

Tjk=RjRk

其中,Rj表示Riesz算子。应用Riesz算子在Lp(R3)中的有界性和广义的Marcinkiewicz插值定理(文献[21]定理5.3.2),便可得到相应的结果。

引理424 令β(Q)=1-6[tr(Q3)]2|Q|6,假设QS03S03={QM3×3:Qij=Qji,tr(Q)=0 i,j=1,2,3},则有0β(Q)1

2 定理1的证明

引入一个具有紧支撑的光滑函数ψCc(Rn)

ψ(y)=1,    |y|<1,0,    |y|2,

且当1|y|2时,0ψ1。对于任意的R>0,令ϕR(x)=ψ|x|RxR3。类似于文献[19]的方法,将uR(x)=u(x)ϕR(x)HR(x)=-H(x)ϕR(x)作为试验函数,可得

μR3|u|2ϕRdx+ΓR3|H|2ϕRdx=R3uQ:QϕRdx-R3uQ:aQ-bQ2-tr(Q2)3I3×3+cQ|Q|2ϕRdx-R3(ΩQ-QΩ):ΔQϕRdx+R3(ΩQ-QΩ)aQ-bQ2-tr(Q2)3I3×3+cQ|Q|2ϕRdx-λR3|Q|D:HϕRdx-R3(QQ)uϕRdx+λR3|Q|H:(uϕR)dx-λR3(QΔQ-ΔQQ):(uϕR)dx+R312|u|2uϕRdx+R3PuϕR+12|u|2ΔϕRdx=i=110Ii

由引理1~引理3,估计I1~I10

对于I1I6,分部积分后得到

|I1+I6|=R3uQ:QϕRdx-R3(QQ)uϕRdx=R312|Q|2uϕRdxC||u||L92,(R3)|||Q|2ϕR||L97,1(R3)C||u||L92,(R3)|||Q|2||L2,(R3)||ϕR||L185,1(R3)CR-16||u||L92,(R3)|||Q|2||L2,(R3)||ϕ||L185,1(R3)

R时,易知I1+I60

类似地,有

|I2|=R3uQ:aQ-bQ2-tr(Q2)3I3×3+cQ|Q|2ϕRdx=R3 a2|Q|2-b3tr(Q3)+c4|Q|4uϕRdxC[1+||Q||L(R3)+||Q||L(R3)2]||u||L92,(R3)×|||Q|2||L2,(R3)||ϕR||L185,(R3)C[1+||Q||L(R3)+||Q||L(R3)2]||u||L92,(R3)||Q||L4,(R3)2||ϕR||L185,(R3)CR-16[1+||Q||L(R3)+||Q||L(R3)2]||u||L92,||Q||L4(R3)2

对于I3I8,分部积分后得到

|I3+I8|=-R3(ΩQ-QΩ):ΔQϕRdx-R3(QΔQ-ΔQQ):(uϕR)dx=-R3(QΔQ-ΔQQ):uϕRdxC||2Q||L2(R3)||u||L92,(R3)||Q||L||ϕR||L185,1(R3)CR-16||2Q||L2(R3)||u||L92,(R3)||Q||L

对于I5I7,有

|I5+I7|=-λR3|Q|D:HϕRdx+λR3|Q|H:(uϕR)dx=λR3|Q|H:uϕRdxC||QHu||L1813,(R3)||ϕR||L185,1(R3)C||QH||L2,(R3)||u||L92,(R3)||ϕR||L185,1(R3)CR-16[1+||Q||L(R3)]2||Q||H2(R3)2×||u||L92,(R3)||ϕ||L185,1(R3)

对于I9,有

I9=R312|u|2uϕRdxCR|x|2R|u|3|ϕR|dxC|||u|3||L32,(R|x|2R)||ϕR||L3,1(R|x|2R)C||u||L92,(R|x|2R)3

对于I10,类似于文献[19]的方法,对式(1)的第1个方程取散度,可得

ΔP=-divdiv(uu+QQ+λ|Q|H+QΔQ-ΔQQ)

P=P1+P2,使得ΔP1=-divdiv(f1)ΔP2=-divdiv(f2),其中,f1=uuL94(R3)

f2=QQ+λ|Q|H+QΔQ-ΔQQL2(R3)

那么,由引理3可得

P1=Tjkf1L94,(R3),P2=Tjkf2L2,(R3),

因此,

I10=R3PuϕR+12|u|2ΔϕRdx=R3P1uϕRdx+R3P2uϕRdx+R312|u|2ΔϕRdx=J1+J2+J3

其中,

J1R3|P1uϕR|dxC||P1||L94(R|x|2R)||u||L92,(R|x|2R)||ϕR||L3,1(R|x|2R)C||P1||L94(R|x|2R)||u||L92,(R|x|2R),J2R3|P2uϕR|dxC||P2||L2(R3)||u||L92,(R3)||ϕR||L185,1(R3)CR-16||P2||L2(R3)||u||L92,(R3)||ϕ||L185,1(R3)
J3R3|12|u|2ΔϕR|dxC|||u|2||L94,(R3)||ΔϕR||L95,1(R3)CR-16||u||L92,(R3)2

因为Q是对称的且Ω是反对称的,易得I4=0。综上可知,当R时,有I1I100式(2)中令R,由控制收敛定理,可得

μR3|u|2dx+ΓR3|H|2dx=0

又因uL6(R3)HL2(R3),所以u=0H=0。再由H的表达式,可知

-ΔQ=-aQ+bQ2-tr(Q2)3I3×3-cQtr(Q2)

对该椭圆方程与QϕRL2内积,再由引理4,有

R3|Q|2ϕRdx=R3|Q|2ΔϕRdx-R3[a|Q|2-btr(Q)3+c|Q|4]ϕRdx||Δψ||LR2R3|Q|2dx+R3b2-24ac24c|Q|2dx||Δψ||LR2R3|Q|2dx

||Q||L2(R3)<,最终可得Q=0

证毕!

http://dx.doi.org/10.3785/j.issn.1008-9497.2022.04.001

参考文献

PAICU MZARNESCU A.

Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system

[J]. SIAM Journal on Mathematical Analysis, 2011435): 2009-2049. DOI:10.1137/10079224X

[本文引用: 1]

HUANG J RDING S J.

Global well-posedness for the dynamical Q-tensor model of liquid crystals

[J]. Science China Mathematics, 2015586): 1349-1366. DOI:10.1007/s11425-015-4990-8

FEIREISL EROCCA ESCHIMPERNA Get al.

Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential

[J]. Communications in Mathematical Sciences, 2014122): 317-343. DOI:10.4310/CMS.2014.v12.n2.a6

BALL J MMAJUMDAR A.

Nematic liquid crystals: From maier-saupe to a continuum theory

[J]. Molecular Crystals and Liquid Crystals, 20105251): 1-11. DOI:10.1080/15421401003795555

CHEN G QMAJUMDAR AWANG D Het al.

Global existence and regularity of solutions for active liquid crystals

[J]. Journal of Differential Equations, 20172631): 202-239. DOI:10.1016/j.jde.2017. 02.035

XIAO Y.

Global strong solution to the three-dimensional liquid crystal flows of Q-tensor model

[J]. Journal of Differential Equations, 20172623): 1291-1316. DOI:10.1016/j.jde.2016.10.011

ABELS HDOLZMANN GLIU Y.

Well-posedness of a fully coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary data

[J]. SIAM Journal on Mathematical Analysis, 2014464): 3050-3077. DOI:10.1137/130945405

MAJUMDAR AWANG Y W.

Remarks on uniaxial solutions in the Landau-de Gennes theory

[J]. Journal of Mathematical Analysis and Applications, 20184641): 328-353. doi:10.1016/j.jmaa.2018.04.003

[本文引用: 1]

GALDI G. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems[M]. New YorkSpringer2011. doi:10.1007/978-0-387-09620-9_1

[本文引用: 1]

CHAE D.

Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations

[J]. Communications in Mathematical Physics, 201432637-48. DOI:10.1007/s00220-013-1868-x

[本文引用: 1]

CHAE DWOLF J.

On Liouville type theorems for the steady Navier-Stokes equations in R 3

[J]. Journal of Differential Equations, 201626110): 5541-5560. DOI:10.1016/j.jde.2016.08.014

[本文引用: 1]

KOZONO HTERASAWA YWAKASUGI Y.

A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions

[J]. Journal of Functional Analysis, 20172722): 804-818. DOI:10.1016/j.jfa.2016.06.019

[本文引用: 1]

CHAE DYONEDA T.

On the Liouville theorem for the stationary Navier-Stokes equations in a critical space

[J]. Journal of Mathematical Analysis and Applications, 20134052): 706-710. DOI:10. 1016/j.jmaa.2013.04.040

[本文引用: 1]

CHAE DWOLF J.

On Liouville type theorem for the stationary Navier-Stokes equations

[J]. Calculus of Variations and Partial Differential Equations, 201958111. DOI:10.1007/s00526-019-1549-5

KOCH GNADIRASHVILI NSEREGIN G Aet al.

Liouville theorems for the Navier-Stokes equations and applications

[J]. Acta Mathematica, 200920383-105. DOI:10.1007/s11511-009-0039-6

KOROBKOV MPILECKAS KRUSSO R.

The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl

[J]. Journal of Mathematical Fluid Mechanics, 2015172): 287-293. DOI:10.1007/s00021-015-0202-0

SEREGIN G.

Liouville type theorem for stationary Navier-Stokes equations

[J]. Nonlinearity, 2016292191-2195. doi:10.1088/0951-7715/29/8/2191

LEI ZZHANG Q S.

A Liouville theorem for the axially-symmetric Navier-Stokes equations

[J]. Journal of Functional Analysis, 20102618): 2323-2345. DOI:10.1016/j.jfa.2011.06.016

[本文引用: 1]

GONG H JLIU X GZHANG X T.

Liouville theorem for the steady-state solutions of Q-tensor system of liquid crystal

[J]. Applied Mathematics Letters, 201876175-180. DOI:10.1016/j.aml. 2017.08.019

[本文引用: 4]

ZHONG X.

A Liouville theorem for the compressible Navier-Stokes equations

[J]. Mathematical Methods in the Applied Sciences, 20184113): 5091-5095. doi:10.1002/mma.5055

[本文引用: 3]

BERGH JLÖFSTRÖM J. Interpolation Spaces: An Introduction[M]. Berlin/New YorkSpringer-Verlag1976. doi:10.1007/978-3-642-66451-9_2

[本文引用: 2]

KOZONO HYAMAZAKI M.

Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains

[J]. Nonlinear Analysis: Theory, Methods & Applications, 1999388): 959-970. DOI:10.1016/S0362-546X(98)00145-X

[本文引用: 1]

LEMARIÉ-RIEUSSET P G. Recent Developments in the Navier-Stokes Problem[M]. Boca RatonCRC Press2002. doi:10.1201/9781420035674

[本文引用: 1]

MAJUMDAR A.

Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory

[J]. European Journal of Applied Mathematics, 2010212): 181-203. DOI:10.1017/S095679250 9990210

[本文引用: 1]

/