Please wait a minute...
Journal of Zhejiang University (Science Edition)  2022, Vol. 49 Issue (4): 398-407    DOI: 10.3785/j.issn.1008-9497.2022.04.002
Mathematics and Computer Science     
Download: HTML( 0 )   PDF(564KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Probabilistic hesitant fuzzy set (PHFS) is the extension of hesitant fuzzy set (HFS), that based on hesitant fuzzy set but adding a corresponding probability value for each membership degree. It is an effective tool to solve multi-attribute index decision-making problems, and can fully express the initial decision-making information given by experts. In this paper, we first introduce the basic definition and related operations of probability hesitant fuzzy number (PHFN), and present an improved method concerning the shortcomings of traditional PHFN score function and Hamming distance. Secondly, a new concept of Hamming distance and similarity of PHFN is proposed by appropriately supplementing the number of elements in membership set, and the similarity of probability hesitant fuzzy matrix (PHFM) is introduced according to the evaluation matrix given by experts. Finally, an interactive group evaluation method is given based on PHFM similarity in probabilistic hesitant fuzzy environment, and the effectiveness of the method is verified by an example.



Key wordsprobabilistic hesitant fuzzy number (PHFN)      PHFN Hamming distance      PHFN similarity      interactive group evaluation     
Received: 20 April 2021      Published: 13 July 2022
CLC:  O 159  
Cite this article:

. . Journal of Zhejiang University (Science Edition), 2022, 49(4): 398-407.

URL:

https://www.zjujournals.com/sci/EN/Y2022/V49/I4/398


基于概率犹豫模糊相似度的交互式群体决策方法

概率犹豫模糊集(probabilistic hesitant fuzzy set,PHFS)是犹豫模糊集的推广,在犹豫模糊集基础上通过为每个隶属度添加与之相对应的概率,以全面表达专家赋予的初始决策信息,是处理多属性指标决策问题的一种有效工具。首先,介绍了概率犹豫模糊数(PHFN)的基本定义和相关运算,指出了传统PHFN的得分函数和汉明距离的不足,并给出了改进方法。其次,通过适当补充隶属度集合中的元素数量提出了PHFN的汉明距离和相似度概念,依据专家赋予的评价矩阵引入了概率犹豫模糊矩阵(PHFM)相似度。最后,在概率犹豫模糊环境下基于PHFM相似度提出了一种交互式群体评价算法,并用实例验证了算法的有效性。


关键词: 概率犹豫模糊数(PHFN),  PHFN汉明距离,  PHFN相似度,  交互式群体评价 
标准化PHFN距离测度
按定义9计算按本文定义10计算
γ1={0.4/0.3,0.6/0.7},γ2={0.3/0.40.7/0.6}d(γ1,γ2)=0D(γ1,γ2)=0.042
γ3={0.1/?0.3,0.9/?0.7},γ4={0.3/?0.10.7/?0.9}d(γ3,γ4)=0D(γ3,γ4)=0.089
γ5={0.1/?0.4,0.9/?0.6},γ6={0.4/?0.10.6/?0.9}d(γ5,γ6)=0D(γ5,γ6)=0.129
Table 1 Comparison of distance measures of three standardized PHFN
方案c1c2c3c4
Y1{0.85/1}{0.2/0.4,0.5/0.6}{0.45/1}{0.6/1}
Y2{0.7/1}{0.1/0.3,0.6/0.7}{0.57/1}{0.31/1}
Y3{0.7/0.4,0.2/0.6}{0.5/1}{0.16/1}{0.59/1}
Y4{0.3/0.7,0.56/0.1,0.7/0.2}{0.3/1}{0.18/1}{0.4/1}
Y5{0.6/1}{0.49/1}{0.1/0.4,0.3/0.6}{0.75/1}
Table 2 The initial evaluation matrix R(1) given by the expert l1
方案c1c2c3c4
Y1{0.73/1}{0.6/0.3,0.8/0.7}{0.3/1}{0.82/1}
Y2{0.68/1}{0.5/1}{0.3/0.4,0.7/0.6}{0.5/1}
Y3{0.55/1}{0.59/1}{0.1/0.2,0.3/0.4,0.6/0.4}{0.5/1}
Y4{0.7/0.2,0.8/0.8}{0.1/1}{0.43/1}{0.16/1}
Y5{0.5/0.2,0.6/0.8}{0.5/1}{0.2/1}{0.5/1}
Table 3 The initial evaluation matrix R(2) given by the expert l2
方案c1c2c3c4
Y1{0.6/1}{0.34/1}{0.3/0.2,0.4/0.8}{0.5/1}
Y2{0.1/1}{0.25/1}{0.31/1}{0.63/1}
Y3{0.2/0.2,0.3/0.8}{0.43/1}{0.12/1}{0.4/1}
Y4{0.4/1}{0.2/0.2,0.4/0.5,0.5/0.3}{0.1/1}{0.12/1}
Y5{0.53/1}{0.1/0.3,0.4/0.7}{0.3/1}{0.2/1}
Table 4 The initial evaluation matrix R(3) given by the expert l3
方案c1c2c3c4
Y1{0.747/1}

{0.404/0.12,0.490/0.18,

0.527/0.28,0.596/0.42}

{0.354/0.2,0.386/0.8}{0.669/1}
Y2{0.558/1}{0.304/0.3,0.468/0.7}{0.407/0.4,0.553/0.6}{0.496/1}
Y3

{0.339/0.12,0.368/0.18,

0.523/0.08,0.544/0.32}

{0.501/1}

{0.127/0.2,0.147/0.4,

0.334/0.4}

{0.502/1}
Y4

{0.498/0.14,0.562/0.56,

0.570/0.02,0.622/0.04,

0.624/0.08,0.669/0.16}

{0.204/0.2,0.277/0.5,

0.319/0.3}

{0.251/1}{0.237/1}
Y5{0.545/0.2,0.578/0.8}{0.387/0.3,0.465/0.7}{0.204/0.4,0.268/0.6}{0.535/1}
Table 5 Comprehensive evaluation matrix R after integration
方案c1c2c3c4
Y1{0.760/1}

{0.402/0.12,0.500/0.18,

0.529/0.28,0.606/0.42}

{0.361/0.2,0.388/0.8}{0.677/1}
Y2{0.585/1}{0.301/0.3,0.487/0.7}{0.421/0.4,0.567/0.6}{0.480/1}
Y3

{0.343/0.12,0.367/0.18,

0.548/0.08,0.565/0.32}

{0.516/1}

{0.129/0.2,0.201/0.4,

0.340/0.4}

{0.513/1}
Y4

{0.499/0.14,0.564/0.56,

0.580/0.02,0.637/0.04,

0.634/0.08,0.684/0.16}

{0.209/0.2,0.269/0.5,

0.305/0.3}

{0.257/1}{0.252/1}
Y5{0.549/0.2,0.582/0.8}{0.408/0.3,0.470/0.7}{0.194/0.4,0.267/0.6}{0.563/1}
Table 6 Comprehensive evaluation matrix R' of expert group after modifying weight
方法得分函数方案排序
γˉ1γˉ2γˉ3γˉ4γˉ5
文献[5]方法0.4890.3560.2130.3310.287Y1?Y2?Y4?Y5?Y3
文献[10]方法0.4250.3910.2850.3430.253Y1?Y2?Y4?Y3?Y5
本文方法0.2870.1610.1380.1050.154Y1?Y2?Y5?Y3?Y4
Table 7 Comparison of the score function and comprehensive ranking obtained by three methods
[1]   TORRA V. Hesitant fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25(6): 529-539. DOI:10.1002/int.20418
doi: 10.1002/int.20418
[2]   XU Z S, XIA M M. Distance and similarity measures for hesitant fuzzy sets[J]. Information Sciences, 2011, 181(11), 2128-2138. DOI:10.1016/j.ins. 2011.01.028
doi: 10.1016/j.ins. 2011.01.028
[3]   ZHU B, XU Z S, XIA M M. Dual hesitant fuzzy sets[J]. Journal of Applied Mathematics, 2012, 2012: 879629. DOI:10.1155/2012/879629
doi: 10.1155/2012/879629
[4]   刘卫锋,何霞. 毕达哥拉斯犹豫模糊集[J].模糊系统与数学,2016, 30(4): 107-115.
LIU W F, HE X. Pythagorean hesitation fuzzy set[J]. Fuzzy Systems and Mathematics, 2016, 30(4):107-115.
[5]   XU Z S, ZHOU W. Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment[J]. Fuzzy Optimization & Decision Making, 2017, 16(4): 481-503. DOI:10.1007/s10700-016-9257-5
doi: 10.1007/s10700-016-9257-5
[6]   XU Z S. Group decision making based on multiple types of linguistic preference relations[J]. Information Sciences, 2008, 178(2): 452-467. DOI:10.1016/j.ins.2007.05.018
doi: 10.1016/j.ins.2007.05.018
[7]   GAO J, XU Z S, LIAO H C. A dynamic reference point method for emergency response under hesitant probabilistic fuzzy environment[J]. International Journal of Fuzzy Systems, 2017, 19(5): 1261-1278. DOI:10.1007/s40815-017-0311-4
doi: 10.1007/s40815-017-0311-4
[8]   SU Z, XU Z S, ZHAO H, et. al . Entropy measures for probabilistic hesitant fuzzy information[J]. IEEE Access, 2019, 7: 65714-65727. DOI:10.1109/ACCESS.2019.2916564
doi: 10.1109/ACCESS.2019.2916564
[9]   WU J, LIU X D, WANG Z W, et al. Dynamic emergency decision-making method with probabilistic hesitant fuzzy information based on GM(1,1) and TOPSIS[J]. IEEE Access, 2019, 7: 7054-7066. DOI:10.1109/ACCESS.2018.2890110
doi: 10.1109/ACCESS.2018.2890110
[10]   梁玉英. 基于概率犹豫模糊信息集成算法的数据产品选择[J]. 计算机工程与应用, 2019, 55(3): 219-224. DOI:10.3778/j.issn.1002-8331.1806-0300
LIANG Y Y. Selection of data products based on probabilistic hesitant fuzzy information aggregation algorithm[J]. Computer Engineering and Applications, 2019, 55(3): 219-224. DOI:10.3778/j.issn.1002-8331.1806-0300
doi: 10.3778/j.issn.1002-8331.1806-0300
[11]   武文颖, 李应, 倪志伟, 等. 概率犹豫模糊Maclaurin几何对称平均算子及其群决策模型[J]. 系统科学与数学, 2020, 40(6): 1074-1089. doi:10.12341/jssms13911
WU W Y, LI Y, NI Z W, et al. Probabilistic hesitant fuzzy Maclaurin geometric symmetric mean operator and its group decision making model[J]. Journal of Systems Science and Mathematical, 2020, 40(6): 1074-1089. doi:10.12341/jssms13911
doi: 10.12341/jssms13911
[12]   ZENG S Z, SU W H, SUN L R. A method based on similarity measures for interactive group decision-making with intuitionistic fuzzy preference relations[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6909-6917. DOI:10.1016/j.apm.2013.01.044
doi: 10.1016/j.apm.2013.01.044
[13]   LIAO H C, XU Z S. Satisfaction degree based interactive decision making under hesitant fuzzy environment with incomplete weights[J]. International Journal of Uncertainty, 2014, 22(4): 553-572. DOI:10.1142/S0218488514500275
doi: 10.1142/S0218488514500275
[14]   杜娟, 霍佳震. 交互式多属性群决策评价方法研究[J]. 中国管理科学, 2016, 24(11): 120-128. DOI:10.16381/j.cnki.issn1003-207x.2016.11.014
DU J, HUO J Z. A study on the interactive evaluation in multiple attribute group decision making[J]. Chinese Journal of Management Science, 2016, 24(11): 120-128. DOI:10.16381/j.cnki.issn1003-207x.2016.11.014
doi: 10.16381/j.cnki.issn1003-207x.2016.11.014
[15]   袁宇翔, 孙静春. 多粒度语言信息的交互式多属性群决策方法及应用[J]. 运筹与管理, 2019, 28(6): 25-32. DOI:10.12005/orms.2019.0124
YUAN Y X, SUN J C. Interactive multi-attribute group decision making with multi-granularity linguistic information and its application[J]. Operations Research and Management Science, 2019, 28(6): 25-32. DOI:10.12005/orms.2019.0124
doi: 10.12005/orms.2019.0124
[16]   WANG G J, TAO Y J, LI Y H. TOPSIS evaluation system of logistics transportation based on an ordered representation of the polygonal fuzzy set[J]. International Journal of Fuzzy Systems, 2020, 22(5):1565-1581. DOI:10.1007/s40815-020-00861-6
doi: 10.1007/s40815-020-00861-6
[1] Dan LI,Guijun WANG. The proof and generalization of Hamming distance measure in the Pythagorean fuzzy environment[J]. Journal of Zhejiang University (Science Edition), 2023, 50(4): 402-408.
[2] Dan Li,Guijun WANG. Complete separability and approximation of the intuitionistic polygonal fuzzy number space.[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 532-539.
[3] Yujie TAO,Chunfeng SUO. Ranking method of Pythagorean fuzzy numbers characterized by curved trapezoidal area[J]. Journal of Zhejiang University (Science Edition), 2022, 49(4): 391-397.
[4] LI Yanhong. The subadditivity and autocontinuity of the generalized quasi Sugeno integral[J]. Journal of Zhejiang University (Science Edition), 2020, 47(1): 67-71.