Please wait a minute...
Journal of Zhejiang University (Science Edition)  2024, Vol. 51 Issue (3): 336-346    DOI: 10.3785/j.issn.1008-9497.2024.03.012
Mathematics and Computer Science     
Kinetic analysis and optimal control of computer virus transmission model with immune function
Wei CHEN,Jian HE,Yi LIU()
School of Instrument and Electronics,North University of China,Taiyuan 030051,China
Download: HTML( 0 )   PDF(2313KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The spread and outbreak of computer viruses in the information age have had a huge impact on social production and people's lives, and it is particularly important to effectively prevent and suppress the spread of computer viruses. In this paper, a computer virus propagation model with immune function is established making use of the optimal control method. It obtains the basic reproduction number R0 based on the method of the next generation matrix; It builds the Liapunov function, and proves the condition of the global stability of the disease-free equilibrium point when R01; The optimal solution is obtained based on Pontryagin's principle of maximum value. Numerical simulation results show that the optimal control model can detect and deal with infected computers while improving the installation and protection rate of antivirus software, and the control target time is the shortest and the control cost is the lowest.



Key wordscomputer virus      kinetic analysis      optimal control      sensitivity analysis      immune function     
Received: 23 March 2023      Published: 07 May 2024
CLC:  TP 309.5  
Corresponding Authors: Yi LIU     E-mail: liuyi_bs@nuc.edu.cn
Cite this article:

Wei CHEN,Jian HE,Yi LIU. Kinetic analysis and optimal control of computer virus transmission model with immune function. Journal of Zhejiang University (Science Edition), 2024, 51(3): 336-346.

URL:

https://www.zjujournals.com/sci/EN/Y2024/V51/I3/336


具有免疫效力的计算机病毒传播模型的动力学分析和优化控制研究

信息时代计算机病毒的传播、爆发对社会生产和人民生活造成严重影响,有效预防和抑制计算机病毒传播尤为重要。结合最优控制方法,建立了一种具有免疫效力的计算机病毒传播模型。由下一代矩阵方法求得基本再生数R0,并证明了无病平衡点的全局稳定性,通过敏感性分析找到对R0敏感的参数;构建了Liapunov函数,证明了当R01时无病平衡点的全局稳定性;基于庞特里亚金最值原理得到最优解。用数值模拟方法对不同控制措施下的结果进行对比分析,结果表明,在及时检测并隔离被感染计算机并提高杀毒软件的安装率和保护率的情况下,控制目标的时间最短且控制成本最低。


关键词: 计算机病毒,  动力学分析,  最优控制,  敏感性分析,  免疫功能 
Fig.1 Flowchart of computer virus transmission
参数描述
A常数输入
β1感染后无症状计算机的传染率系数
β2感染后有症状计算机的传染率系数
ε杀毒软件对计算机的保护率
σ计算机中杀毒软件的卸载率
α易感计算机杀毒软件的安装率
?潜伏期计算机的病毒感染率
θ被感染计算机从无症状到有症状的速率
μ感染后有症状计算机的隔离率
δ被隔离计算机的恢复率
ω感染后无症状的计算机被及时发现并处理的恢复率
γ已恢复计算机变为易感计算机的速率
d计算机的自然断网率
Table 1 Parameters of model 1
Fig.2 Sensitivity analysis between R0 and each parameter
Fig.3 The case without optimal control
Fig.4 The case of timely detection and detection of infected computers and isolation
Fig.5 The case of increase the installation rate and protection rate of anti-virus software
Fig.6 The case of considers all control situations
[1]   COHEN F. Computer viruses: Theory and experiments[J]. Computers & Security, 1987, 6(1): 22-35. DOI:10.1016/0167-4048(87)90122-2
doi: 10.1016/0167-4048(87)90122-2
[2]   张仁斌, 李钢, 侯整风. 计算机病毒与反病毒技术[M]. 北京: 清华大学出版社, 2006.
ZHANG R B, LI G, HOU Z F. Computer Viruses and Anti-Virus Technology[M]. Beijing: Tsinghua University Press, 2006.
[3]   MURRAY W H. The application of epidemiology to computer viruses[J]. Computers & Security, 1988, 7(2): 139-145. DOI:10.1016/0167-4048(88)90327-6
doi: 10.1016/0167-4048(88)90327-6
[4]   YANG X, YANG L X. Towards the epidemiological modeling of computer viruses[J]. Discrete Dynamics in Nature and Society, 2012, 2012: 259671. DOI:10.1155/2012/259671
doi: 10.1155/2012/259671
[5]   周斌. 大数据云计算环境下的数据安全问题分析[J]. 电子技术与软件工程, 2021, 5: 245-246. doi:10.1109/iaeac50856.2021.9391025
ZHOU B. Analysis of data security in big data cloud computing environment[J]. Information Technology and Security, 2021, 5: 245-246. doi:10.1109/iaeac50856.2021.9391025
doi: 10.1109/iaeac50856.2021.9391025
[6]   杨芳芳, 张子振. 具有混合隔离策略的非线性计算机病毒传播模型的Hopf分岔研究[J]. 浙江大学学报(理学版), 2022, 49(5): 570-579. DOI:10.3785/j.issn.1008-9497.2022.05.008
YANG F F, ZHANG Z Z. Hopf bifurcation of nonlinear computer virus propagation model with hybrid quarantine strategy[J]. Journal of Zhejiang University (Science Edition), 2022, 49(5): 570-579. DOI:10.3785/j.issn.1008-9497.2022.05.008
doi: 10.3785/j.issn.1008-9497.2022.05.008
[7]   张先休, 熊江, 车杭骏, 等. 基于SEIS模型的计算机病毒防控分析[J]. 华中科技大学学报(自然科学版), 2023, 51(5): 144-148. DOI:10.13245/j.hust.228999
ZHANG X X, XIONG J, CHE H J, et al. Prevention and control analysis of computer viruses based on SEIS model[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2023, 51(5): 144-148. DOI:10. 13245/j.hust.228999
doi: 10. 13245/j.hust.228999
[8]   王刚, 陆世伟, 胡鑫, 等. 潜伏机制下网络病毒传播SEIQRS模型及稳定性分析[J]. 哈尔滨工业大学学报, 2019, 51(5): 131-137. DOI:10.11918/j.issn. 0367-6234.201805136
WANG G, LU S W, HU X, et al. Network virus spreading SEIQRS model and its stability under escape mechanism[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 131-137. DOI:10.11918/j.issn.0367-6234.201805136
doi: 10.11918/j.issn.0367-6234.201805136
[9]   张瑜, 刘庆中, 石元泉, 等. 受基因理论启发的计算机病毒进化模型[J]. 电子科技大学学报, 2018, 47(6): 888-894. DOI:10.3969/j.issn.1001-0548. 2018.06.014
ZHANG Y, LIU Q Z, SHI Y Q, et al. Gene-inspired model for computer viruses evolution[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(6): 888-894. DOI:10.3969/j.issn.1001-0548.2018.06.014
doi: 10.3969/j.issn.1001-0548.2018.06.014
[10]   冯丽萍, 韩燮, 韩琦, 等. 考虑社交网络用户行为的网络病毒传播建模[J]. 计算机应用, 2018, 38(10): 2899-2902. DOI:10.11772 /j.issn.1001-9081.2018040850
FENG L P, HAN X, HAN Q, et al. Network virus propagation modeling considering social network user behaviors[J]. Journal of Computer Applications, 2018, 38(10): 2899-2902. DOI:10.11772/j.issn. 1001-9081.2018040850
doi: 10.11772/j.issn. 1001-9081.2018040850
[11]   王刚, 陆世伟, 胡鑫. “去二存一”混合机制下的病毒扩散模型及稳定性分析[J]. 电子与信息学报, 2019, 41(3): 709-716. DOI:10.11999/JEIT180381
WANG G, LU S W, HU X. Virus propagation model and stability under the hybrid mechanism of “two-go and one-live”[J]. Journal of Electronics & Information Technology, 2019, 41(3): 709-716. DOI:10.11999/JEIT180381
doi: 10.11999/JEIT180381
[12]   张晓潘, 袁凌云. 具有时滞-扩散作用的无线传感网络病毒传播模型的振荡动力学研究[J]. 计算机科学, 2017, 44(S1): 390-394. doi:10.11896/j.issn.1002-137X.2017.6A.088
ZHANG X P, YUAN L Y. Oscillatory behaviors of malware propagation model in wireless sensor networks withtime delays and reaction-diffusion terms[J]. Computer Science, 2017, 44(S1): 390-394. doi:10.11896/j.issn.1002-137X.2017.6A.088
doi: 10.11896/j.issn.1002-137X.2017.6A.088
[13]   张道祥, 李迅. 非连续免疫策略对计算机病毒SIR模型的影响[J]. 应用科学学报, 2016, 34(3): 329-338. DOI:10.3969/j.issn.0255-8297.2016.03.010
ZHANG D X, LI X. Impact of discontinuous immunity on SIR computer virus model[J]. Journal of Applied Sciences, 2016, 34(3): 329-338. DOI:10.3969/j.issn.0255-8297.2016.03.010
doi: 10.3969/j.issn.0255-8297.2016.03.010
[14]   张化川, 王晗, 胡文婕. 带可移动存储设备的P2G网络病毒传播模型[J]. 计算机应用研究, 2017, 34(3): 875-878. doi:10.3969/j.issn.1001-3695.2017.03.055
ZHANG H C, WANG H, HU W J. Computer virus model with influence of removable storage devices in P2G network[J]. Application Research of Computers, 2017, 34(3): 875-878. doi:10.3969/j.issn.1001-3695.2017.03.055
doi: 10.3969/j.issn.1001-3695.2017.03.055
[15]   李君. 具有密度依赖和有限抗病毒能力的计算机病毒模型的前向与后向分支[J]. 中山大学学报(自然科学版), 2016, 55(1): 35-38. DOI:10.13471/j.cnki.acta.snus.2016.01.006
LI J. Forward and backward bifurcation of a computer virus model with density-dependent and limited anti-virus ability[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(1): 35-38. DOI:10.13471/j.cnki.acta.snus.2016.01.006
doi: 10.13471/j.cnki.acta.snus.2016.01.006
[16]   孙德顺, 苏永美. 一般函数的计算机病毒模型最优控制[J]. 河南科技大学学报(自然科学版), 2015, 36(2): 96-99. DOI:10.15926/j.cnki.issn1672-6871. 2015.02.001
SUN D S, SU Y M. Optimal control of computer virus model based on general function[J]. Journal of Henan University of Science and Technology(Natural Science), 2015, 36(2): 96-99. DOI:10.15926/j.cnki.issn1672-6871.2015.02.001
doi: 10.15926/j.cnki.issn1672-6871.2015.02.001
[17]   LI M T, JIN Z, SUN G Q, et al. Modeling direct and indirect disease transmission using multi-group model[J]. Journal of Mathematical Analysis and Applications, 2017, 446(2): 1292-1309. DOI:10. 1016/j.jmaa.2016.09.043
doi: 10. 1016/j.jmaa.2016.09.043
[18]   周义仓, 靳祯, 秦军林. 常微分方程及其应用[M]. 北京: 科学出版社, 2010.
ZHOU Y C, JIN Z, QIN J L. Ordinary Differential Equations and Their Applications[M]. Beijing: Science Press, 2010.
[19]   VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2): 29-48. DOI:10.1016/S0025-5564(02)00108-6
doi: 10.1016/S0025-5564(02)00108-6
[20]   HORN R A, JOHNSON C R. Matrix Analysis[M]. Cambridge: Cambridge University Press, 2012.
[21]   CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in Mathematical Sciences, 2008, 6(2): 507-520. doi:10.4310/cms.2008.v6.n2.a12
doi: 10.4310/cms.2008.v6.n2.a12
[22]   LA SALLE J P. The Stability of Dynamical Systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976. DOI:10.1137/1. 9781611970432
doi: 10.1137/1. 9781611970432
[23]   FLEMING W H, RISHEL R W. Deterministic and Stochastic Optimal Control[M].NewYork: Springer Science & Business Media, 2012.
[24]   CHEN Y, ZHANG J, JIN Z. Optimal control of an influenza model with mixed cross-infection by age group[J]. Mathematics and Computers in Simulation, 2023, 206: 410-436. DOI:10.1016/j.matcom.2022.11.019
doi: 10.1016/j.matcom.2022.11.019
[25]   ANIŢA S, ARNAUTU V, CAPASSO V. An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB®[M]. Basel: Birkhauser, 2011. doi:10.1007/978-0-8176-8098-5
doi: 10.1007/978-0-8176-8098-5
[26]   BLOWER S, DOWLATABADI H. Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example[J]. International Statistical Review, 1994, 62(2): 229-243. DOI:10.2307/1403510
doi: 10.2307/1403510
[27]   MARINO S, HOGUE I B, RAY C J, et al. A methodology for performing global uncertainty and sensitivity analysis in systems biology[J]. Journal of Theoretical Biology, 2008, 254(1): 178-196. DOI:10.1016/j.jtbi.2008.04.011
doi: 10.1016/j.jtbi.2008.04.011
[1] ZHU Mingmin, LIU Sanyang. An improved Bhattacharyya divergence for sensitivity analysis of covariance matrices in Gaussian Bayesian networks.[J]. Journal of Zhejiang University (Science Edition), 2019, 46(1): 9-14.
[2] WU Xiong-wei,Qiu Jia-wei. A Kind of Optimal Control Modelling for the Rank Structure of University and Its Solution[J]. Journal of Zhejiang University (Science Edition), 1999, 26(4): 94-100.