Please wait a minute...
Journal of Zhejiang University (Science Edition)  2024, Vol. 51 Issue (3): 299-307    DOI: 10.3785/j.issn.1008-9497.2024.03.007
Mathematics and Computer Science     
The mean random chord length of convex sets and their extreme values
Jiangfu ZHAO()
Department of Mathematics and Physics,Fujian Jiangxia University,Fuzhou 350108,China
Download: HTML( 0 )   PDF(841KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyze the mean random chord length of convex sets under different kinds of random processes, we take circles, equilateral triangles, rectangles, and squares as examples. Their mean values are obtained using definition method. Then the extreme values of the mean chord length of convex sets are discussed by means of the chord power integrals and their inequalities. Furthermore, some inequalities about these mean values are established, and two conjectures are proposed.



Key wordsmean random chord length      extreme value      convex set      mean distance      chord power integral      integral geometry     
Received: 17 January 2023      Published: 07 May 2024
CLC:  O 186.5  
Cite this article:

Jiangfu ZHAO. The mean random chord length of convex sets and their extreme values. Journal of Zhejiang University (Science Edition), 2024, 51(3): 299-307.

URL:

https://www.zjujournals.com/sci/EN/Y2024/V51/I3/299


凸域内的平均随机弦长及其极值

为研究在不同随机意义下平面凸域内的平均随机弦长问题,以圆域、正三角形域、矩形域、正方形域为例,用定义法得到这些凸域内的各平均随机弦长。用弦幂积分及其不等式,讨论了任意凸域内5种平均随机弦长的极值问题,并建立了相应的不等式。在此基础上,提出了2个猜想。


关键词: 平均随机弦长,  极值,  凸域,  平均距离,  弦幂积分,  积分几何 
 Fig.1 PAD,QADFig.2 PAD,QABFig.3 PAD,QBCFig.4 PAD,QCD
Fig.5 Regular triangle domain T in cartesian coordinates
Fig.6 Image of Ei(σ) in the rectangle domain for a+b=2
[1]   SHUKLA P, THONGJAOMAYUM D. Surprising variants of Cauchy's formula for mean chord length[J]. Condensed Matter, 2019, 20: 1-7. DOI:10.1103/PhysRevE.100.050103
doi: 10.1103/PhysRevE.100.050103
[2]   BERETTA M, PINTO J T, LANGGNER P, et al. Insights into the impact of nanostructural properties on powder tribocharging: The case of milled salbutamol sulfate[J]. Molecular Pharmaceutics, 2022, 19(2): 547-557. DOI:10.1021/acs.molpharmaceut.1c00668
doi: 10.1021/acs.molpharmaceut.1c00668
[3]   PANDIT A V, RANADE V V. Chord length distribution to particle size distribution[J]. AIChE Journal, 2016, 62(12): 4215-4228. DOI:10.1002/aic.15338
doi: 10.1002/aic.15338
[4]   LI M, WILKINSON D. Determination of non-spherical particle size distribution from chord length measurements. Part 1: Theoretical analysis[J]. Chemical Engineering Science, 2005, 60(12): 3251-3265. DOI:10.1016/j.ces.2005.01.008
doi: 10.1016/j.ces.2005.01.008
[5]   GRUY F, JACQUIER S. The chord length distribution of a two-sphere aggregate[J]. Computational Materials Science, 2008, 44(2): 218-223. DOI:10.1016/j.commatsci.2008.03.026
doi: 10.1016/j.commatsci.2008.03.026
[6]   KRUIJF W J M D, KLOOSTERMAN J L. On the average chord length in reactor physics[J]. Annals of Nuclear Energy, 2003, 30(5): 549-553. DOI:10. 1016/S0306-4549(02)00107-X
doi: 10. 1016/S0306-4549(02)00107-X
[7]   WU H, SCHMIDT P W. Intersect distributions and small-angle X-ray scattering theory[J]. Journal of Applied Crystallography, 2010, 4(3): 224-23. DOI:10.1107/S0021889871006745
doi: 10.1107/S0021889871006745
[8]   KOSTEN C W. The mean free path in room acoustics[J]. Acustica, 1960, 10(4): 245-250.
[9]   SANTALÓ L A. Integral Geometry and Geometric Probability[M]. 2nd ed. Cambridge: Cambridge University Press, 2004. doi:10.1017/cbo9780511617331.004
doi: 10.1017/cbo9780511617331.004
[10]   MATHAI A M. An Introduction to Geometrical Probability: Distributional Aspects with Applications[M]. Singapore: Gordon and Breach Science Publishers, 1999.
[11]   REN D L. Random chord distributions and containment functions[J]. Advances in Applied Mathematics, 2014, 58: 1-20. DOI:10.1016/j.aam.2014.05.003
doi: 10.1016/j.aam.2014.05.003
[12]   HOROWITZ M. Probability of random paths across elementary geometrical shapes[J]. Journal of Applied Probability, 1965, 2(1): 169-177. DOI:10. 2307/3211882
doi: 10. 2307/3211882
[13]   LÜKO G. On the mean length of the chords of a closed curve[J]. Israel Journal of Mathematics, 1966, 4(1): 23-32. DOI:10.1007/BF02760067
doi: 10.1007/BF02760067
[14]   赵静. 椭圆域与矩形域的平均随机弦长[J]. 武汉科技大学学报(自然科学版),2007, 30(4): 441-443. DOI:10.3969/j.issn.1674-3644.2007.04.029
ZHAO J. The mean length of the chords of the ellipse and therectangle[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2007, 30(4): 441-443. DOI:10.3969/j.issn.1674-3644.2007.04.029
doi: 10.3969/j.issn.1674-3644.2007.04.029
[15]   赵静, 李德宜, 王现美. 凸域内弦的平均长度[J]. 数学杂志, 2007, 27(3): 291-294. doi:10.3969/j.issn.0255-7797.2007.03.011
ZHAO J, LI D Y, WANG X M. The average length of the chords of a convex domain[J]. Journal of Mathematics, 2007, 27(3): 291-294. doi:10.3969/j.issn.0255-7797.2007.03.011
doi: 10.3969/j.issn.0255-7797.2007.03.011
[16]   李文, 邹都, 李德宜. 随机弦长矩与弦幂积分[J]. 数学杂志, 2012, 32(5): 935-942. DOI:10.13548/j.sxzz.2012.05.026
LI W, ZOU D, LI D Y. The moments of random chord lengths and chord power integrals[J]. Journal of Mathematics, 2012, 32(5): 935-942. DOI:10. 13548/j.sxzz.2012.05.026
doi: 10. 13548/j.sxzz.2012.05.026
[17]   管秀娟, 李德宜, 张晓丽. 等腰梯形域内两点间平均距离[J]. 数学杂志, 2011, 31(6): 1141-1144. DOI:10.13548/j.sxzz.2011.06.004
GUAN X J, LI D Y, ZHANG X L. The average distance between two points in isosceles trapezoid[J]. Journal of Mathematics, 2011, 31 (6): 1141-1144. DOI:10.13548/j.sxzz.2011.06.004
doi: 10.13548/j.sxzz.2011.06.004
[18]   程鹏, 李寿贵, 许金华. 凸域内两点间的平均距离[J]. 数学杂志, 2008, 28(1): 57-60.
CHENG P, LI S G, XU J H. The mean distance of two points of a convex domain[J]. Journal of Mathematics, 2008, 28 (1): 57-60.
[19]   李寿贵, 韩汇芳, 杨佩佩. 平行四边形内点与边界点的平均距离[J]. 武汉科技大学学报, 2011, 34(5): 376-380. DOI:10.3969/j.issn.1674-3644.2011.05.014
LI S G, HAN H F, YANG P P. The average distance from the interior points to the boundary points of a parallelogram[J]. Journal of Wuhan University of Science and Technology, 2011, 34(5): 376-380. DOI:10.3969/j.issn.1674-3644.2011.05.014
doi: 10.3969/j.issn.1674-3644.2011.05.014
[20]   DUNBAR S R. The average distance between points in geometric figures[J]. The College Mathematics Journal, 1997, 28(3): 187-197. DOI:10.1080/07468342.1997.11973860
doi: 10.1080/07468342.1997.11973860
[21]   AHARONYAN N G, MANOOGIAN A. The distribution of the distance between two random points in a convex set[J]. Russian Journal of Mathematical Research(Series A), 2015, 1(1): 4-8. DOI:10. 13187/RJMR.A.2015.1.4
doi: 10. 13187/RJMR.A.2015.1.4
[22]   BURGSTALLER B, PILICHAMMER F. The average distance between two points[J]. Bulletin of the Australian Mathematical Society, 2009, 80(3): 353-359. DOI:10.1017/S0004972709000707
doi: 10.1017/S0004972709000707
[23]   XU W X. Entropy of chord distribution of convex bodies[J]. Proceedings of the American Mathematical Society, 2019, 147(7): 3131-3141. DOI:10.1090/PROC/14447
doi: 10.1090/PROC/14447
[24]   ZHANG G Y. Geometric inequalities and inclusion measures of convex bodies[J]. Mathematika,1994, 41 (1): 95-116. DOI:10.1112/S0025579300007208
doi: 10.1112/S0025579300007208
[25]   ZHANG G Y. Dual kinematic formulas[J]. Transactions of the American Mathematical Society, 1999, 351(3): 985-995. DOI:10.1090/S0002-9947-99-02053-X
doi: 10.1090/S0002-9947-99-02053-X
[26]   任德麟. 积分几何引论[M]. 上海: 上海科学技术出版社,1988.
REN D L. Introduction for Integral Geometry[M]. Shanghai: Shanghai Science and Technology Press,1988.
[27]   张高勇, 黎荣泽. 某些凸多边形内定长线段运动测度公式及其在几何概率中的应用[J]. 武汉钢铁学院学报, 1984,1(4): 106-128.
ZHANG G Y, LI R Z. The kinembtic measre formulae of segment of fixed length within some convex polyons and their applications to geometric probility problems[J]. Journal of Wuhan Institute of Iron and Steel,1984,1(4): 106-128.
[1] Jiangfu ZHAO,Hai LIU. Containment measures of axisymmetric convex domains[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 175-183.