Please wait a minute...
Journal of Zhejiang University (Science Edition)  2024, Vol. 51 Issue (2): 172-177    DOI: 10.3785/j.issn.1008-9497.2024.02.005
Mathematics and Computer Science     
A note on commutative graphs
Han WU1,2,Fenjin LIU1(),Fanqi SHANG1,3,Yanhong ZHOU1,Haotong RUAN1
1.School of Science,Chang'an University,Xi'an 710064,China
2.Department of Mathematics,Nanjing University,Nanjing 210093,China
3.Qingdao Innovation and Development Base of Harbin Engineering University,Qingdao 266000,Shandong Province,China
Download: HTML( 2 )   PDF(687KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Two simple graphs are commutative if there exists a labelling of their vertices such that their adjacency matrices can commute. This paper gives three necessary conditions ensuring the commutativity of certain graphs from Perron vectors, the number of main eigenvalues, the regularity of graphs. Then we construct new commutative graphs by graph Kronecker product, Cartesian product and circulant matrix. Finally, for two commutative graphs, we provide two algorithms that can express one adjacency matrix as the matrix polynomial of another adjacency matrix with distinct eigenvalues, and compare their merits. Commutative graphs sharing common eigenvectors are essential to the study of spectral graph theory.



Key wordscommutative graph      regular graph      circulant graph      Kronecker product      Cartesian product     
Received: 09 May 2022      Published: 08 March 2024
CLC:  O 157.5  
Corresponding Authors: Fenjin LIU     E-mail: fenjinliu@chd.edu.cn
Cite this article:

Han WU,Fenjin LIU,Fanqi SHANG,Yanhong ZHOU,Haotong RUAN. A note on commutative graphs. Journal of Zhejiang University (Science Edition), 2024, 51(2): 172-177.

URL:

https://www.zjujournals.com/sci/EN/Y2024/V51/I2/172


可交换图的一些注记

如果存在一种顶点标号,使得2个简单图的邻接矩阵可交换,则称2个简单图可交换。首先,从图的Perron向量、主特征值数量、正则性三方面给出了可交换图的必要条件。然后,借助矩阵的克罗内克积、图的笛卡尔积及循环矩阵,构造了新的可交换图。最后,将一个邻接矩阵表示为另一个特征值互异的邻接矩阵的矩阵多项式,给出了2种算法,并比较了二者的优劣。可交换图存在公共的特征向量,对图谱理论研究具有重要意义。


关键词: 可交换图,  正则图,  循环图,  克罗内克积,  笛卡尔积 
Fig.1 Commutative graphs with different number of main eigenvalues
Fig.2 Non-regular commutative graphs G and G¯
Fig.3 Connected graphs with 6 vertices and the number of main eigenvalues less than 3
图的序号可交换图的序号
G6G6
G7G7G13
G8G8
G9G9G17G19G20
G10G10G16
G11G11
G12G12
G13G7G13
G14G14
G15G15
G16G10G16
G17G9G17G19G20
G18G18
G19G9G17G19
G20G9G17G20
G21G21
G22G22
G23G23
Table 1 Connected graphs with six vertices two main eigenvalues and their commutative graphs
Fig.4 A pair of commutative graphs that can be expressed as matrix polynomial of their adjacency matrices
[1]   HORN R A, JOHNSON C R. Matrix Analysis[M]. 2nd ed. Cambridge / New York: Cambridge University Press, 2012.
[2]   GODSIL C D, MCKAY B D. Constructing cospectral graphs[J]. Aequationes Mathematicae, 1982, 25(1): 257-268. DOI: 10.1007/BF02189621
doi: 10.1007/BF02189621
[3]   LIU F J, WANG W, YU T, et al. Generalized cospectral graphs with and without Hamiltonian cycles[J]. Linear Algebra and Its Applications, 2020, 585: 199-208. DOI: 10.1016/j.laa.2019.10.001
doi: 10.1016/j.laa.2019.10.001
[4]   JI Y Z, GONG S C, WANG W. Constructing cospectral bipartite graphs[J]. Discrete Mathematics, 2020, 343(10): 112020. DOI: 10.1016/j.disc.2020.112020
doi: 10.1016/j.disc.2020.112020
[5]   HEINZE A. Applications of Schur Rings in Algebraic Combinatorics: Graphs, Partial Difference Sets and Cyclotomic Schemes[D]. Oldenburg: Universität Oldenburg, 2001.
[6]   BEEZER R A. On the polynomial of a path[J]. Linear Algebra and Its Applications, 1984, 63: 221-225. DOI: 10.1016/0024-3795(84)90144-7
doi: 10.1016/0024-3795(84)90144-7
[7]   AKBARI S, MOAZAMI F, MOHAMMADIAN A. Commutativity of the adjacency matrices of graphs[J]. Discrete Mathematics, 2009, 309(3): 595-600. DOI: 10.1016/j.disc.2008.09.006
doi: 10.1016/j.disc.2008.09.006
[8]   COLLINS L, SCIRIHA I. The walks and CDC of graphs with the same main eigenspace[J]. Discussiones Mathematicae Graph Theory, 2023, 43 (2): 507-532. DOI: 10.7151/dmgt.2386
doi: 10.7151/dmgt.2386
[9]   GODSIL C, ROYLE G. Algebraic Graph Theory[M]. New York: Springer, 2001. doi:10.1007/978-1-4613-0163-9
doi: 10.1007/978-1-4613-0163-9
[10]   CVETKOVIĆ D M, ROWLINSON P. An Introduction to the Theory of Graph Spectra: 48[M]. Cambridge: Cambridge University Press, 2010. doi:10.1017/cbo9780511801518
doi: 10.1017/cbo9780511801518
[11]   高随祥. 图论与网络流理论[M]. 北京: 高等教育出版社, 2009.
GAO S X. Graph Theory and Network Flow Theory[M]. Beijing: Higher Education Press, 2009.
[12]   丘维声. 高等代数(下册)[M]. 北京: 清华大学出版社, 2019.
QIU W S. Higher Algebra (Vol 2)[M]. Beijing: Tsinghua University Press, 2019.
[1] ZHOU Houqing. Bounds of rank for some integral circulant graphs[J]. Journal of Zhejiang University (Science Edition), 2020, 47(3): 301-305.
[2] ZHOU Houqing. Upper bounds of Laplacian spectral radius for the Cartesian product graphs[J]. Journal of Zhejiang University (Science Edition), 2018, 45(1): 10-13,17.
[3] WANG Guoxing. Relation between Cartesian product and adjacent vertex distinguishing coloring[J]. Journal of Zhejiang University (Science Edition), 2017, 44(5): 520-525.
[4] DU Juan, LYU Damei, ZHANG Ke. L(2,1)-labelings of the local-edge-path-replacements of Cartesian products[J]. Journal of Zhejiang University (Science Edition), 2016, 43(6): 679-681.
[5] ZHOU Houqing. Resolvent Estrada index for circulant graphs[J]. Journal of Zhejiang University (Science Edition), 2016, 43(5): 517-520.