Please wait a minute...
Journal of Zhejiang University (Science Edition)  2024, Vol. 51 Issue (1): 21-28    DOI: 10.3785/j.issn.1008-9497.2024.01.004
Mathematics and Computer Science     
The optimization of multi-UAVs patrol path with hybrid genetic algorithm
Guojun LI1,Ziwan ZHENG2(),Yingsheng FAN1,Tiantian LU1,Zhijiang XU3
1.Basic Courses Department,Zhejiang Police College,Hangzhou 310053,China
2.School of Big-Data and Network Security,Zhejiang Police College,Hangzhou 310053,China
3.School of Automation,Zhejiang Institute of Mechanical & Electrical Engineering,Hangzhou 310053,China
Download: HTML( 4 )   PDF(940KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the optimization of multi-UAVs patrol path, a patrol model of multi-UAVs based on hybrid genetic algorithm is proposed. When constructing the patrol model, each UAV must start from the police station and return to the police station at the end of the patrol. The algorithm is designed by combining traditional genetic algorithm and hill-climbing algorithm. In order to achieve a better optimization effect, the roulette wheel method is employed to select the excellent individuals with higher probability when selecting individuals of the population. In the application of genetic algorithm, the rules of gene crossover and mutation adapted to path optimization are defined. The simulation results show that the proposed hybrid genetic algorithm is significantly better than the traditional genetic algorithm on the optimization effect.



Key wordsgenetic algorithm      hill-climbing algorithm      patrol      path optimization     
Received: 01 February 2023      Published: 10 January 2024
CLC:  O 224  
Corresponding Authors: Ziwan ZHENG     E-mail: zhengziwan@zjjcxy.cn
Cite this article:

Guojun LI,Ziwan ZHENG,Yingsheng FAN,Tiantian LU,Zhijiang XU. The optimization of multi-UAVs patrol path with hybrid genetic algorithm. Journal of Zhejiang University (Science Edition), 2024, 51(1): 21-28.

URL:

https://www.zjujournals.com/sci/EN/Y2024/V51/I1/21


基于混合遗传算法的多无人机巡逻路径优化

假设无人机巡逻的起、终点均为派出所,提出了一种融合传统遗传算法和爬山算法的警用无人机巡逻路径优化模型——混合遗传算法。按照轮盘赌法则,进行种群个体的选择,以增大优秀种群个体被选中的概率,达到较好的优化效果。同时定义了与路径优化相适应的基因交叉和变异规则。仿真结果表明,提出的混合遗传算法在寻优效果上明显优于传统遗传算法。


关键词: 遗传算法,  爬山算法,  巡逻,  路径优化 
Fig.1 Flow of path planning algorithm
Fig.2 Schematic diagram of the relative positions of some patrol points under the jurisdiction of Changhe Police Station
编号巡逻点名称横坐标x/km纵坐标y/km停留时间/h
1中南乐游城0.2191.7170.30
2滨兴家园0.4211.5910.30
3杭州滨兴学校0.7811.7270.30
4滨兴小区0.9291.6150.30
5杭州蓝臣大酒店0.4630.8590.30
6英飞特大厦1.0110.9910.12
7新鸿宾大酒店0.3570.5790.12
8杭州森浩国际酒店0.2590.3590.12
9伟星旅馆0.2610.2490.12
10杭州乐天派英智康复医院0.4050.1130.12
11春波小区1.8791.5210.12
12春波南苑1.9371.3030.12
13滨康小区1.5350.6090.12
14滨康二苑1.5310.4170.12
15康庭酒店1.7090.4680.12
16西兴街道办事处1.8470.3850.12
17迎春南苑2.3851.7130.12
18滨江御滨府2.6871.7010.12
19三江商厦2.7991.4290.12
20铁岭花园西区2.2471.4610.12
21云厦连园2.5631.3030.30
22西陵社区2.8111.1850.12
23西陵饭店2.7431.0910.12
24东方花城3.1271.0510.30
25滨安小区2.3271.0190.21
26官河锦庭2.5070.8990.12
27玲珑府2.6750.9250.12
28速8酒店2.8970.7550.12
29映映红园区2.7710.6180.10
30湖头陈农贸市场3.1750.1770.20
31湖头陈花苑3.0910.0690.10
32长河派出所0.3850.4850
Table 1 Relative coordinate information of patrol points and cruise time of patrol points
Fig.3 Patrol path of the best individual in the first generation population
Fig.4 Optimal patrol path after 200 iterations
Fig.5 Shortest path changes during iteration process
算 法获得全局最优数/次最优路径平均巡航距离/km搜索最优路径所花费的平均时间/s
传统遗传算法020.236 716.789 2
混合遗传算法119.558 970.161 7
Table 2 Results of 20 runs when population size is 80
算 法获得全局最优数/次最优路径平均巡航距离/km搜索最优路径所花费的平均时间/s
传统遗传算法119.557 836.852 1
混合遗传算法418.159 188.181 5
Table 3 Results of 20 runs when population size is 200
[1]   卢文忠, 杨俊峰. 抗疫精神融入公安院校治安学专业课程的教学实践探索[J]. 铁道警察学院学报, 2022, 32(6): 120-124. DOI:10.19536/j.cnki.411439. 2022.06.020
LU W Z, YANG J F. Exploring the teaching practice of integrating the spirit of anti epidemic into the public security course in public colleges and universities[J]. Journal of Railway Police College, 2022, 32(6): 120-124. DOI:10.19536/j.cnki.411439. 2022.06.020
doi: 10.19536/j.cnki.411439. 2022.06.020
[2]   邹青, 刘小丽. 屯警街面全天候巡逻:潜江市推出警务综合服务新模式[J]. 领导科学论文(下), 2015(4): 37-38. DOI:10.3969/j.issn.2095-5103.2015. 04.015
ZOU Q, LIU X L. Police patrol on the street all day : Qianjiang city launched a new model of comprehensive police service[J]. Leadership Science Thesis (Volume II), 2015(4): 37-38. DOI:10.3969/j.issn.2095-5103.2015.04.015
doi: 10.3969/j.issn.2095-5103.2015.04.015
[3]   董晓霖. 大数据在社会治安防控中的应用探索[J]. 中国新通信, 2021, 23(13): 147-148. DOI:10.3969/j.issn.1673-4866.2021.13.075
DONG X L. Application of big data in social security prevention and control[J]. China New Communications, 2021, 23(13): 147-148. DOI:10.3969/j.issn.1673-4866.2021.13.075
doi: 10.3969/j.issn.1673-4866.2021.13.075
[4]   张叶彤. 社区警务网格化管理的优化研究:以南京市G区J派出所为例[D]. 南京: 南京大学, 2019.
ZHANG Y T. Research on Optimizing Grid Management of Community Policing: J Police Station in G District, Nanjing City is Taken as an Case[D]. Nanjing: Nanjing University, 2019.
[5]   沈建十, 叶宏杰. 关于深化完善社会治安巡逻防控体系建设的实践与思考: 以宁波市社会治安四级巡逻防控体系建设为例[J]. 公安研究, 2012(12):22-27.
SHEN J S, YE H J. Practice and thinking on perfecting the construction of social security patrol prevention and control system: Take the construction of the four-level patrol prevention and control system of social security in Ningbo as an example[J]. Policing Studies, 2012(12):22-27.
[6]   李路, 王行愚, 江开忠. 基于k阶不可逆邻接矩阵的警车巡逻[J]. 电气自动化, 2010, 32(4): 32-34.DOI:10.3969/j.issn.1000-3886.2010.04.012
LI L, WANG X Y, JIANG K Z. Police cars patrol based on k-order irreversible adjacency matrix[J]. Electrical Automation, 2010, 32(4): 32-34. DOI:10.3969/j.issn.1000-3886.2010.04.012
doi: 10.3969/j.issn.1000-3886.2010.04.012
[7]   吴思远. 全局最优警车巡逻区域最大覆盖调度策略[J]. 广西师范大学学报(自然科学版), 2010(1):96-99. DOI:10.3969/j.issn.1001-6600.2010.01.022
WU S Y. Global optimum maximal coverage scheduling strategy for police cars deployment[J]. Journal of Guangxi Normal University (Natural Science Edition) 2010(1): 96-99. DOI:10.3969/j.issn.1001-6600.2010.01.022
doi: 10.3969/j.issn.1001-6600.2010.01.022
[8]   FRAZIER A E, BAGCHI-SEN S, KNIGHT J. The Spatio-temporal impacts of demolition land use policy and crime in a Shrinking city[J]. Applied Geography, 2013, 41:55-64. DOI:10.1016/j.apgeog.2013.02.014
doi: 10.1016/j.apgeog.2013.02.014
[9]   LERMAN Y, ROFE Y, OMER I. Using space syntax to model pedestrian movement in urban transportation planning[J]. Geographical Analysis, 2014, 46(4):392-410. DOI:10.1111/gean.12063
doi: 10.1111/gean.12063
[10]   JIANG B, OKABE A. Different ways of thinking about street networks and spatial analysis[J]. Geographical Analysis, 2014, 46(4): 341-344. DOI:10.1111/gean.12060
doi: 10.1111/gean.12060
[11]   SHIODE S, SHIODE N. Network-based space- time search-window technique for hotspot detection of street-level crime incidents[J]. International Journal of Geographical Information Science, 2013, 27(5): 866-882. DOI:10.1080/13658816. 2012.724175
doi: 10.1080/13658816. 2012.724175
[12]   SHIODE S, SHIODE N, BLOCK R, et al. Space- time characteristics of micro-scale crime occurrences: An application of a network-based space-time search window technique for crime incidents in Chicago[J]. International Journal of Geographical Information Science, 2015, 29(5): 697-719. DOI:10.1080/13658816.2014.968782
doi: 10.1080/13658816.2014.968782
[13]   WEISSBURD D L, GROFF E R, YANG S. The Criminology of Place: Street Segments and Our Understanding of the Crime Problem[M]. New York:Oxford University Press, 2012. DOI:10.1093/acprof:oso/9780195369083.001.0001
doi: 10.1093/acprof:oso/9780195369083.001.0001
[14]   DINC S, DINC I. Evaluation of unsupervised classification on police patrol zone design problem[C]// IEEE SoutheastCon 2018. St Petersburg: IEEE, 2018: 1-7. DOI:10.1109/secon.2018.8478908
doi: 10.1109/secon.2018.8478908
[15]   ALLEN B. Case study: Using crime data and open source data to design a police patrol area[J]. SMU Data Science Review, 2018, 1(1): 1-22.
[16]   MUKHOPADHYAY A, CHAO Z, VOROBEYCHIK Y, et al. Optimal allocation of police patrol resources using a continuous-time crime model[C]// International Conference on Decision and Game Theory for Security. New York : GameSec, 2016: 139-158. DOI:10.1007/978-3-319-47413-7_9
doi: 10.1007/978-3-319-47413-7_9
[17]   SAINT-GUILLAIN M, PAQUAY C, LIMBOURG S. Time-dependent stochastic vehicle routing problem with random requests: Application to online police patrol management in Brussels[J]. European Journal of Operational Research, 2020, 292(3): 869-885. DOI:10.1016/j.ejor.2020.11.007
doi: 10.1016/j.ejor.2020.11.007
[18]   HUTT O K, BOWERS K, JOHNSON S D. The Effect of GPS refresh rate on measuring police patrol in microplaces[J]. Crime Science, 2021, 10(1):1-14. DOI:10.1186 /s40163-021-00140-1 .
doi: 10.1186 /s40163-021-00140-1
[19]   PIZA E L, GILCHRIST A M, CAPLAN J M, et al. The financial implications of merging proactive CCTV monitoring and directed police patrol: A cost-benefit analysis[J]. Journal of Experimental Criminology, 2016, 12(3): 403-429. DOI:10.1007/s11292-016-9267-x
doi: 10.1007/s11292-016-9267-x
[20]   RYDBERG J, MCGARRELL E F, NORRIS A, et al. A Quasi-experimental synthetic control evaluation of a place-based police-directed patrol intervention on violent crime[J]. Journal of Experimental Criminology, 2018, 14(1): 83-109. DOI:10.1007/s11292-018-9324-8
doi: 10.1007/s11292-018-9324-8
[21]   CHEN X. Fast patrol route planning in dynamic environments[J]. IEEE Transactions on Systems Man and Cybernetics, Part A: Systems and Humans, 2012, 42(4): 894-904. DOI:10.1109/tsmca.2012.2183361
doi: 10.1109/tsmca.2012.2183361
[22]   CHEN X. Police patrol optimization with security level functions [J]. IEEE Transactions on Systems Man and Cybernetics Systems, 2013, 43(5): 1042-1051. DOI:10.1109/tsmca.2012.2226025
doi: 10.1109/tsmca.2012.2226025
[23]   ZHU S, BUKHARIN A W, LU L, et al. Data-driven optimization for police beat design in South Fulton, Georgia[Z]. (2021-08-24). https://doi.org/10.48550/ arXiv.2004.09660.
[24]   ZHU S, WANG H, XIE Y. Data-driven optimization for police zone design[Z]. (2021-11-02). https://doi.org/10.48550/arXiv.2104.00535.
[25]   杨旭, 王锐, 张涛. 面向无人机集群路径规划的智能优化算法综述[J]. 控制理论与应用, 2020, 37(11): 2291-2302. DOI:10.7641/cta.2020.00157
YANG X, WANG R, ZHANG T. Review of unmanned aerial vehicle swarm path planning based on intelligent optimization[J]. Control Theory & Applications, 2020, 37(11): 2291-2302. DOI:10. 7641/cta.2020.00157
doi: 10. 7641/cta.2020.00157
[26]   郎茂祥, 胡思继. 用混合遗传算法求解物流配送路径优化问题的研究[J]. 中国管理科学, 2002, 10(5): 51-56. DOI:10.3321/j.issn:1003-207x.2002.05.011
LANG M X HU S J. Study on the optimization of physical distribution routing problem by using hybrid genetic algorithm[J]. Chinese Journal of Management Science, 2002, 10(5): 51-56. DOI:10. 3321/j.issn:1003-207x.2002.05.011
doi: 10. 3321/j.issn:1003-207x.2002.05.011
[27]   胡小建, 杨智. 基于混合遗传算法的多拣货小车路径规划研究[J]. 合肥工业大学学报(自然科学版), 2022, 45(12): 1715-1722. DOI:10.3969/j.issn.1003-5060.2022.12.019
HU X J, YANG Z. Research on path planning of multi-picking car based on hybrid genetic algorithm[J]. Journal of Hefei University of Technology(Natural Science), 2022, 45(12): 1715-1722. DOI:10.3969/j.issn.1003-5060.2022.12.019
doi: 10.3969/j.issn.1003-5060.2022.12.019
[28]   丛玉良, 孙闻晞, 薛科,等. 基于改进的混合遗传算法的车联网任务卸载策略研究[J]. 通信学报, 2022, 43(10): 77-85. DOI:10.11959/j.issn.1000-436x.2022188
CONG Y L, SUN W X, XUE K, et al. Research on task offloading strategy of internet of vehicles based on improved hybrid genetic algorithm[J]. Journal on Communications, 2022, 43(10): 77-85. DOI:10. 11959/j.issn.1000-436x.2022188
doi: 10. 11959/j.issn.1000-436x.2022188
[29]   张铁, 胡亮亮, 邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-810. DOI:10.3785/j.issn.1008-973X.2021.05.001
ZHANG T, HU L L, ZOU Y B. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(5): 801-810. DOI:10.3785/j.issn.1008-973X.2021.05.001
doi: 10.3785/j.issn.1008-973X.2021.05.001
[30]   张玉州, 徐廷政, 郑军帅. 基于混合遗传算法的紧急程度不确定应急物流问题求解[J]. 系统科学与数学, 2020, 40(4): 714-728. DOI:10.12341/jssms13847
ZHANG Y Z, XU T Z, ZHENG J S. Solving emergency logistics problem with uncertain urgency based on a hybrid genetic algorithm[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(4): 714-728. DOI:10.12341/jssms13847
doi: 10.12341/jssms13847
[1] Ran XIAO, Xinlei AN, Huimin QI, Shuai QIAO. Bifurcation analysis and parameter identification of HR neurons under electric field[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 691-697.
[2] LI Kangping, WANG Pengjun, ZHANG Huihong. The search of the best power polarity of ternary FPRM circuit based on simulated annealing genetic algorithm[J]. Journal of Zhejiang University (Science Edition), 2016, 43(2): 190-194.
[3] BU Dengli. Hybrid genetic algorithm for MPRM minimization[J]. Journal of Zhejiang University (Science Edition), 2016, 43(2): 184-189.
[4] HE Jiang -ping 1,TANG Jing -chang 1,TONG S Y 2. The application of genetic algorithms in LEED.[J]. Journal of Zhejiang University (Science Edition), 2000, 27(5): 503-507.
[5] Deng Mingrong Bao Yongguang Shen Zuzhi. Genetic Algorithm for Optimization of Running a Thermal Power Plant [J]. Journal of Zhejiang University (Science Edition), 1998, 25(4): 24-27.