Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (3): 332-345    DOI: 10.3785/j.issn.1008-9497.2023.03.011
Earth Science     
Spatial characteristics and sources of water pollution in nearshore area: A case study on the nearshore area of Ruian in southern Zhejiang
Zhexuan ZHANG1,Zilong LI1(),Hong YE2,Fangfang JIN2,Zehui WEI1,Na HE2,Mingzhi ZHANG1,Yanting CHEN1
1.Ocean College,Zhejiang University,Zhoushan 316021,Zhejiang Province,China
2.Ruian Branch,Bureau of Ecology and Environment of Wenzhou City,Wenzhou 325200,Zhejiang Province,China
Download: HTML( 4 )   PDF(4860KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Pollution characteristics and pollution sources of nearshore environment are two key issues for regional Marine environment protection. In this paper, the nearshore area of the Ruian in southern Zhejiang were taken for case study. In May 2020, marine environment investigation and surface water samplings at 16 stations, and analysis of 12 water quality parameters (Salinity, Dissolved Oxygen, Chemical Oxygen Demand, Dissolved Inorganic Nitrogen, Dissolved Inorganic Phosphate, Mercury, Cadmium, Lead, Chromium, Arsenic, Zinc and Copper) for each station were carried out. The pollution evaluation, multivariate statistical methods (using SPSS) and spatial analysis (using ArcGIS) were used to explore the spatial characteristics and pollution sources. The results showed that the sea water quality of the Ruian nearshore area was generally good; however dissolved inorganic nitrogen and dissolved inorganic phosphate in water exceeded the Chinese Standard seriously (worse than the fourth class) in some areas. The evaluation results using the eutrophication index method showed that the eutrophication was the most serious in the near estuarine area of Feiyun River. The evaluation results using the nitrogen phosphorus ratio showed that there was a great risk of red tide around the Beiji islands. According to the results of cluster analysis, the study area can be divided into four parts with different pollution characteristics. According to the results of principal component analysis, the main source of nutrition and chemical oxygen demand are probably due to agriculture, while heavy metal pollution may come from electroplating, parts processing and shipping.



Key wordsRuian nearshore area      water quality      pollution spatial characteristics      sources of pollution     
Received: 11 April 2022      Published: 19 May 2023
CLC:  X 82  
Corresponding Authors: Zilong LI     E-mail: zilongli@zju.edu.cn
Cite this article:

Zhexuan ZHANG,Zilong LI,Hong YE,Fangfang JIN,Zehui WEI,Na HE,Mingzhi ZHANG,Yanting CHEN. Spatial characteristics and sources of water pollution in nearshore area: A case study on the nearshore area of Ruian in southern Zhejiang. Journal of Zhejiang University (Science Edition), 2023, 50(3): 332-345.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I3/332


近岸海域水质污染因子空间特征和来源研究

近岸海域的环境污染特征和污染来源是区域海洋环境保护的两大关键问题。以浙南瑞安市近岸海域为例,于2020年5月开展16个站位的海洋环境调查和表层海水采样,通过室内分析测试,共获得12项水质参数(盐度、溶解氧、化学需氧量、无机氮、活性磷酸盐、汞、镉、铅、铬、砷、锌、铜)数据,采用污染评价、多元数理统计分析(通过SPSS实现)及空间异质性分析(通过ArcGIS实现)等方法,较深入地探究了瑞安市近岸海域环境污染的空间特征和污染来源。研究结果表明,瑞安市近岸海域水质总体情况良好,各水质参数变异系数较大,部分海域的无机氮和活性磷酸盐明显超标。采用营养指数法进行评价,得到飞云江近口段和河口段的富营养化最严重;采用氮磷比法进行评价,得到北麂列岛周边海域发生赤潮灾害的风险更大。依据聚类分析结果,可将研究海域分为污染特征各异的4个区域。依据主成分分析结果,推测瑞安市近岸海域水体中营养盐、化学需氧量的主要污染源为农业,而重金属污染的可能来源为电镀、零件加工企业和船舶等。


关键词: 瑞安市近岸海域,  水质,  污染空间特征,  污染源 
Fig.1 Monthly distribution of cumulative red tide occurrence in the coastal area of Zhejiang province during the years between 2010 and 2018
Fig.2 Study area and sampling stations
水质参数瑞安市近岸2020年5月

标准

偏差

变异

系数/%

一类

标准

单一指标所属类别

杭州湾新区近岸

2018年4月

宁德市近岸

2017年全年

符号单位最大值最小值平均值
S32.013.726.75.91322.18-
DOmg·L-17.265.466.810.4797.046二类8.107.55
CODmg·L-12.240.220.930.57861.902二类1.170.60
DIPmg·L-10.0590.0150.0340.01439.760.015劣四类0.0480.029
DINmg·L-10.7260.2070.3720.16343.900.2劣四类1.2600.363
Crμg·L-12.1150.3450.8020.50663.0750一类1.100
Cuμg·L-18.1651.4203.2081.79655.985二类2.8001.210
Znμg·L-130.21510.45516.9135.96235.2520二类18.000
Asμg·L-12.1601.4201.7470.23813.6120一类1.780
Cdμg·L-10.1150.0000.0310.031100.271一类0.0800.050
Hgμg·L-10.1650.0100.0360.039109.420.05三类0.0270.010
Pbμg·L-15.9200.1250.6201.415228.261三类0.9100.390
Table 1 Contents of water quality parameters in Ruian nearshore area and interregional comparison
Fig.3 Sea water quality distribution map of China sea in 2020
Fig.4 Spatial diagram of eutrophication and red tide risk in Ruian nearshore area
Fig.5 Tree procedure of cluster analysis of sampling stations of Ruian nearshore area
Fig.6 Zoning plan of Ruian nearshore area
水质参数SDOCODDIPDINCrCuZnAsCdHgPb
S1.000
DO0.874**1.000
COD-0.844**-0.683**1.000
DIP-0.689**-0.636**0.756**1.000
DIN-0.797**-0.810**0.620**0.650**1.000
Cr-0.157-0.2670.2170.2200.2291.000
Cu-0.419-0.626**0.2970.3860.557*0.0221.000
Zn-0.212-0.461*0.1540.1440.2980.1530.796**1.000
As0.0700.0550.1590.084-0.1660.3850.0100.3201.000
Cd-0.125-0.416-0.132-0.2110.2140.2100.4020.523*0.1911.000
Hg-0.198-0.518*0.1230.1920.363-0.0270.733**0.570*-0.1510.473*1.000
Pb0.1990.133-0.314-0.152-0.225-0.0510.068-0.025-0.367-0.2480.2191.000
Table 2 Correlation coefficient matrix of each water quality parameters in Ruian nearshore area
水质参数主成分
F1F2F3F4
S-0.8480.3810.1140.115
DO-0.9440.0190.0790.059
COD0.745-0.5440.0560.040
DIP0.720-0.481-0.0830.228
DIN0.857-0.181-0.148-0.134
Cr0.284-0.0850.5340.546
Cu0.7530.495-0.1540.074
Zn0.5820.6280.2170.126
As0.0740.0270.8670.235
Cd0.3660.6550.362-0.346
Hg0.5610.624-0.2980.054
Pb-0.2060.280-0.6080.643
特征根4.9022.2491.7490.998
贡献率/%40.8518.7414.578.32
累计贡献率/%40.8559.5974.1682.48
Table 3 Main factors load matrix
Fig.7 Spatial distribution of main factors score and comprehensive score
Fig.8 Features diagrams of main factors in each region
[1]   AWAN P. Relationship between environment and sustainable economic development: A theoretical approach to environmental problems[J]. International Journal of Asian Social Science, 2013, 3(3): 741-761.
[2]   阙伟伟. 近岸海域海洋环境变化与经济发展的关系研究[D]. 舟山: 浙江海洋大学, 2017.
QUE W W. A Study on the Interplay between the of Fshore Environment and Economic Development: A Case of Zhejiang Wenzhou[D]. Zhoushan: Zhejiang Ocean University, 2017.
[3]   陈丽雯, 戴圣生, 雷富, 等. 涠洲岛近岸海域重金属污染状况研究[J]. 广西科学院学报, 2021, 37(1): 37-45. DOI:10.13657/j.cnki.gxkxyxb.20210429.001
CHEN L W, DAI S S, LEI F, et al. Study on heavy metal pollution in coastal waters of Weizhou Island[J]. Journal of Guangxi Academy of Sciences, 2021, 37(1): 37-45. DOI:10.13657/j.cnki.gxkxyxb. 20210429.001
doi: 10.13657/j.cnki.gxkxyxb. 20210429.001
[4]   胡序朋, 邵君波, 唐静亮, 等. 近岸海域富营养化评价方法的研究进展和比较[J]. 中国环境监测, 2016, 32(1): 35-43. DOI:10.3969/j.issn.1002-6002.2016. 01.008
HU X P, SHAO J B, TANG J L, et al. Research progress and comparison of eutrophication assessment methods for coastal waters[J]. Environmental Monitoring in China, 2016, 32(1): 35-43. DOI:10.3969/j.issn.1002-6002.2016.01.008
doi: 10.3969/j.issn.1002-6002.2016.01.008
[5]   李月, 谭丽菊, 王江涛. 山东半岛南部近海表层海水中镉、铅、汞、砷的时空变化[J]. 中国海洋大学学报(自然科学版), 2010, 40(S1): 179-184.
LI Y, TAN L J, WANG J T. The temporal and spatial distribution of cadmium, plumbum, mercury, arsenic of Shandong Southern Coastal surface sea water[J]. Periodical of Ocean University of China(Science Edition), 2010, 40(S1): 179-184.
[6]   CLOERN J E. Our evolving conceptual model of the coastal eutrophication problem[J]. Marine Ecology Progress Series, 2001, 210: 223-253. DOI:10.3354/meps210223
doi: 10.3354/meps210223
[7]   PARK S, KAZAMA F, LEE S. Assessment of water quality using multivariate statistical techniques: A case study of the Nakdong River Basin, Korea[J]. Environmental Engineering Research, 2014, 19(3): 197-203. DOI:10.4491/eer.2014.008
doi: 10.4491/eer.2014.008
[8]   MANOJ K, CHOUDHARY C K. Current scenario on application of multivariate statistical analytical techniques in water environment research[J]. The International Journal of Analytical and Experimental Modal Analysis, 2020, 12(11): 368-379.
[9]   SHARMA V, SHARMA M, PANDITA S, et al. Assessment of water quality using different pollution indices and multivariate statistical techniques-science direct[J]. Heavy Metals in the Environment, 2021: 165-178. doi:10.1016/b978-0-12-821656-9.00009-2
doi: 10.1016/b978-0-12-821656-9.00009-2
[10]   刘绿叶, 孙国铭, 刘培廷, 等. 应用主成分法和聚类分析法分析吕四渔场近岸海水水质[J]. 海洋渔业, 2006, 28(3): 217-221. DOI:10.3969/j.issn.1004-2490.2006.03.008
LIU L Y, SUN G M, LIU P T, et al. An analysis on the inshore water quality on the Lyusi fishing grounds by principal component analysis(PCA) and cluster analysis[J]. Marine Fisheries, 2006, 28(3): 217-221. DOI:10.3969/j.issn.1004-2490.2006.03.008
doi: 10.3969/j.issn.1004-2490.2006.03.008
[11]   曾淦宁, 吴国权, 徐晓群. 多元聚类分析方法在杭州湾水质分析上的应用[J]. 浙江工业大学学报, 2009, 37(1): 14-18. DOI:10.3969/j.issn.1006-4303. 2009.01.004
ZENG G N, WU G Q, XU X Q. Application of multivariate cluster method on the water quality analysis of Hangzhou Bay[J]. Journal of Zhejiang University of Technology, 2009, 37(1): 14-18. DOI:10.3969/j.issn.1006-4303.2009.01.004
doi: 10.3969/j.issn.1006-4303.2009.01.004
[12]   FATAEI E, MOSAVI S, IMANI A A. Identification of anthropogenic influences on water quality of Aras river by multivariate statistical techniques[C]// 2nd International Conference on Biotechnology and Environment Management. Singapore: IACSIT Press, 2012: 35-39. doi:ConferenceArticle/5af3306fc095d70f18b2374d
doi: ConferenceArticle/5af3306fc095d70f18b2374d
[13]   袁连新, 余勇. 聚类分析方法及其环境监测(水质分析)中的应用[J]. 环境科学与技术, 2011, 34(S2): 267-270.
YUAN L X, YU Y. Application of clustering analysis methods in environmental monitoring (water analysis)[J]. Environmental Science & Technology, 2011, 34(S2): 267-270.
[14]   王秋璐, 许艳, 黄海燕, 等. 基于时空矩阵方法对福建省海湾水质变化特征分析[J]. 海洋学报, 2019, 41(2): 134-144. doi:10.3969/j.issn.0253-4193.2019.02.013
WANG Q L, XU Y, HUANG H Y, et al. Analysis of water quality change characteristics in bays of Fujian province based on time-space matrix method[J]. Haiyang Xuebao, 2019, 41(2): 134-144. doi:10.3969/j.issn.0253-4193.2019.02.013
doi: 10.3969/j.issn.0253-4193.2019.02.013
[15]   梁志宏, 陈秀洪, 罗欢, 等. 深圳湾水质时空分布特征及污染源解析[J]. 水资源保护, 2020, 36(4): 93-99. DOI:10.3880/j.issn.1004-6933.2020.04.015
LIANG Z H, CHEN X H, LUO H, et al. Spatio-temporal distribution characteristics of water quality in Shenzhen Bay and pollution source analysis[J]. Water Resources Protection, 2020, 36(4): 93-99. DOI:10.3880/j.issn.1004-6933.2020.04.015
doi: 10.3880/j.issn.1004-6933.2020.04.015
[16]   戚劲. 浙江近岸海域富营养化时空分布变化研究[D]. 杭州: 浙江大学, 2021.
QI J. Study on the Spatio-Temporal Changes of Eutrophication in Zhejiang Coastal Sea[D]. Hangzhou: Zhejiang University, 2021.
[17]   蒋国昌. 浙江南部海域富营养化和赤潮的探讨[J]. 东海海洋, 1993(2): 55-61.
JIANG G C. The preliminary study on the eutrophication and the red tide in the south coastal area of Zhejiang[J]. Donghai Marine Science, 1993(2): 55-61.
[18]   李家芳. 浙江省海岸带自然环境基本特征及综合分区[J]. 地理学报, 1994, 49(6): 551-560. doi:10.11821/xb199406009
LI J F. Characteristics of natural environment and comprehesive regionalization in the coastal zone in Zhejiang province[J]. Acta Geographica Sinica, 1994, 49(6): 551-560. doi:10.11821/xb199406009
doi: 10.11821/xb199406009
[19]   郜钧璋, 刘亚林, 林义, 等. 近10年温州近岸海域赤潮灾害特征分析[J]. 海洋湖沼通报, 2017(4): 86-90.
GAO J Z, LIU Y L, LIN Y, et al. Analysis on characteristics of red tide disaster in Wenzhou coastal waters during the last 10 years[J]. Transactions of Oceanology and Limnology, 2017(4): 86-90.
[20]   朱谦. 春季东海沿岸东海原甲藻藻华与环境因子和水体氮循环过程的关系研究[D]. 厦门: 厦门大学, 2018.
ZHU Q. Relations between Prorocentrum Donghaiense Bloom and Environmental Factors and Nitrogen Cycle Processes in the Water Column in the Spring East China Sea Coastal Area[D]. Xiamen: Xiamen University, 2018.
[21]   金矛. 温州瓯江口海域水体富营养化的变化研究[D]. 杭州: 浙江大学, 2015.
JIN M. Study on the Change of the Eutrophication at Wenzhou Oujiang River Estuary[D]. Hangzhou: Zhejiang University, 2015.
[22]   姚东平, 林柏, 张海丰, 等. 温州飞云江口海域近年来环境质量现状监测与评价[C]// 2018中国环境科学学会科学技术年会论文集. 2018: 344-352.
YAO D P, LIN B, ZHANG H F, et al. Monitoring and evaluation of environmental quality status of Feiyun river estuary in Wenzhou in recent years[C]// 2018 CEST Annual Conference. 2018: 344-352.
[23]   汪玉平, 林岳, 龙伦明. 瑞安市河道水环境现状及建议[J]. 现代农业科技, 2021, (9): 175-176. DOI:10. 3969/j.issn.1007-5739.2021.09.069
WANG Y P, LIN Y, LONG L M. Present situation and suggestion of river water environment in Ruian city[J]. Modern Agricultural Science and Technology, 2021, (9): 175-176. DOI:10.3969/j.issn.1007-5739.2021. 09.069
doi: 10.3969/j.issn.1007-5739.2021. 09.069
[24]   马得莲. 珊溪水利枢纽水利气象信息管理系统的技术论证[J]. 水电站机电技术, 2017, 40(6): 62-64. DOI:10.13599/j.cnki.11-5130.2017.06.022
MA D L. Technology of water conservancy and meteo-rological information management system for Shanxi water conservancy project[J]. Mechanical & Electrical Technique of Hydropower Station, 2017, 40(6): 62-64. DOI:10.13599/j.cnki.11-5130.2017. 06.022
doi: 10.13599/j.cnki.11-5130.2017. 06.022
[25]   邹景忠, 董丽萍, 秦保平. 渤海湾富营养化和赤潮问题的初步探讨[J]. 海洋环境科学, 1983, 2(2): 41-54.
ZOU J Z, DONG L P, QIN B P. A preliminary study on eutrophication and red tide in Bohai Bay[J]. Marine Environmental Science, 1983, 2(2): 41-54.
[26]   孔范龙, 郗敏, 徐丽华, 等. 富营养化水体的营养盐限制性研究综述[J]. 地球环境学报, 2016, 7(2): 121-129. DOI:10.7515/JEE201602002
KONG F L, XI M, XU L H, et al. Review of studies on the limitation of nutrients in the eutrophic water[J]. Journal of Earth Environment, 2016, 7(2): 121-129. DOI:10.7515/JEE201602002
doi: 10.7515/JEE201602002
[27]   张广帅, 闫吉顺, 张全军, 等. 基于主成分分析法近岸海水环境质量与空间异质性研究: 以庄河港近岸海域为例[J]. 海洋环境科学, 2020, 39(2): 244-252.
ZHANG G S, YAN J S, ZHANG Q J, et al. Study on the seawater quality and its spatial heterogeneity based on principle component analysis: A case study nearshore of Zhuanghe port[J]. Marine Environmental Science, 2020, 39(2): 244-252.
[28]   王姮, 张玉荣, 李子孟, 等. 宁波杭州湾新区海域环境质量现状评价[J]. 安徽农业科学, 2020, 48(21): 59-62. DOI:10.3969/j.issn.0517-6611.2020.21.018
WANG H, ZHANG Y R, LI Z M, et al. Evaluation of the current situation of environmental quality in Hangzhou bay new district, Ningbo[J]. Journal of Anhui Agricultural Sciences, 2020, 48(21): 59-62. DOI:10.3969/j.issn.0517-6611.2020.21.018
doi: 10.3969/j.issn.0517-6611.2020.21.018
[29]   雷廷波. 浅析宁德市近岸海域水质状况[J]. 低碳世界, 2019, 9(10): 19-20. DOI:10.3969/j.issn.2095-2066.2019.10.011
LEI T B. Analysis of coastal water quality in Ningde city[J]. Low Carbon World, 2019, 9(10): 19-20. DOI:10.3969/j.issn.2095-2066.2019.10.011
doi: 10.3969/j.issn.2095-2066.2019.10.011
[30]   杨小平, 陈冰玲, 谢文琦, 等. 考洲洋入海口附近海域海水重金属含量分析[J]. 中国资源综合利用, 2021, 39(5): 119-124. DOI:10.3969/j.issn.1008-9500.2021.05.036
YANG X P, CHEN B L, XIE W Q, et al. Analysis of heavy metal content in seawater near Kaozhouyang estuary[J]. China Resources Comprehensive Utilization, 2021, 39(5): 119-124. DOI:10.3969/j.issn.1008-9500.2021.05.036
doi: 10.3969/j.issn.1008-9500.2021.05.036
[31]   谢宏英. 赤潮灾害风险评估研究:以宁德沿海为例[D]. 上海: 上海海洋大学, 2018. doi:10.1016/b978-0-12-409548-9.11468-x
XIE H Y. Risk Assessment of Harmful Algal Blooms: Taking Ningde Coast as an Example[D]. Shanghai: Shanghai Ocean University, 2018. doi:10.1016/b978-0-12-409548-9.11468-x
doi: 10.1016/b978-0-12-409548-9.11468-x
[32]   刘述锡, 孙淑艳, 王真良, 等. 飞云江与鳌江口海域夏、秋季环境因子与浮游生物的分布变化[J]. 生态与农村环境学报, 2014, 30(4): 430-437. DOI:10. 3969/j.issn.1673-4831.2014.04.004
LIU S X, SUN S Y, WANG Z L, et al. Change in distribution of plankton as affected by environmental factors in the estuaries of Feiyunjiang river and Aojiang river in summer and autumn[J]. Journal of Ecology and Rural Environment, 2014, 30(4): 430-437. DOI:10.3969/j.issn.1673-4831.2014.04.004
doi: 10.3969/j.issn.1673-4831.2014.04.004
[33]   陈敏, 陈邦林, 夏福兴, 等. 长江口最大浑浊带悬移质、底质微量金属形态分布[J]. 华东师范大学学报(自然科学版), 1996(1): 38-44.
CHEN M, CHEN B L, XIA F X, et al. Distribution of trace metals in suspended and sediment in the maximum turbidity zone of Yangtze River estuary[J]. Journal of East China Normal University(Natural Science), 1996(1): 38-44.
[34]   车越, 何青, 林卫青. 高浊度河口颗粒态重金属分布特性[J]. 海洋环境科学, 2003, 22(1): 58-62. DOI:10.3969/j.issn.1007-6336.2003.01.013
CHE Y, HE Q, LIN W Q. Distribution characteristics of particulate heavy metals in high turbidity estuaries[J]. Marine Environmental Science, 2003, 22(1): 58-62. DOI:10.3969/j.issn.1007-6336.2003.01.013
doi: 10.3969/j.issn.1007-6336.2003.01.013
[35]   刘启贞, 李九发, 戴志军, 等. 长江口颗粒态金属污染物时空分布规律分析[J]. 海洋环境科学, 2009, 28(3): 251-256. DOI:10.3969/j.issn.1007-6336. 2009.03.005
LIU Q Z, LI J F, DAI Z J, et al. Spatial and temporal distribution of particulate metal pollutants in the Changjiang estuary[J]. Marine Environmental Science, 2009, 28(3): 251-256. DOI:10.3969/j.issn.1007-6336.2009.03.005
doi: 10.3969/j.issn.1007-6336.2009.03.005
[36]   堵盘军, 张蓓, 费岳军. 温州瓯飞浅滩海域悬沙输运特征及其来源探讨[J]. 泥沙研究, 2012(6): 65-74. DOI:10.3969/j.issn.0468-155X.2012.06.010
DU P J, ZHANG B, FEI Y J. Discussion on characteristics of suspended sediment transport and source in sea area adjacent Wenzhou Oufei shoal[J]. Journal of Sediment Research, 2012(6): 65-74. DOI:10.3969/j.issn.0468-155X.2012.06.010
doi: 10.3969/j.issn.0468-155X.2012.06.010
[37]   廉晶晶, 罗泽娇, 靳孟贵. 某厂电镀车间场地土壤与地下水污染特征[J]. 地质科技情报, 2013, 32(2): 150-155.
LIAN J J, LUO Z J, JIN M G. Contamination characteristics of soil and groundwater in electroplating plant[J]. Geological Science and Technology Information, 2013, 32(2): 150-155.
[38]   张荣瀚, 张胜茂, 樊伟, 等. 基于北斗船位数据的浙江省流刺网捕捞努力量特征分析[J]. 海洋渔业, 2021, 43(5): 618-625. DOI:10.3969/j.issn.1004-2490.2021.05.011
ZHANG R H, ZHANG S M, FAN W, et al. Analysis of fishing effort characteristics of gillnets from Zhejiang province based on Beidou satellite navigation data[J]. Marine Fisheries, 2021, 43(5): 618-625. DOI:10.3969/j.issn.1004-2490.2021.05.011
doi: 10.3969/j.issn.1004-2490.2021.05.011
[39]   丁喜桂, 叶思源, 鲁静. 浙江省近岸海域表层沉积物重金属分布特征及地球化学分区[J]. 海洋地质前沿, 2010, 26(12): 1-8.
DING X G, YE S Y, LU J. The heavy metals distribution pattern and geochemical provinces of the surficial sediments offshore Zhejiang[J]. Marine Geology Frontiers, 2010, 26(12): 1-8.
[40]   ZHANG X, DAYTON E A, BASTA N T. Predicting the modifying effect of soils on arsenic phytotoxicity and phytoaccumulation using soil properties or soil extraction methods [J]. Environmental Pollution, 2020, 263: 114501. DOI:10.1016/j.envpol.2020.114501 .
doi: 10.1016/j.envpol.2020.114501
[41]   陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219-2238. DOI:10.11654/jaes.2018-1449
CHEN Y L, WENG L P, MA J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238. DOI:10.11654/jaes.2018-1449
doi: 10.11654/jaes.2018-1449
[42]   邵莉, 肖化云, 吴代赦, 等. 交通源重金属污染研究进展[J]. 地球与环境, 2012, 40(3): 445-459.
SHAO L, XIAO H Y, WU D S, et al. Review on research on traffic-related heavy metals pollution[J]. Earth and Environment, 2012, 40(3): 445-459.
[1] LI Zhenhua, ZHANG Yazhou, ZHOU Yongdong, JIN Haiwei, WANG Weiding. Community structures and water quality evaluation of the net-phytoplankton in Daiquyang, Zhejiang Province[J]. Journal of Zhejiang University (Science Edition), 2017, 44(3): 327-338.
[2] CHEN Hong, YANG Xu, ZHAO Liqin, XU Bailong, GAN Shu, YANG Yueping. Effect of different ores on water quality adjustment of seawater desalinated by reverse osmosis[J]. Journal of Zhejiang University (Science Edition), 2016, 43(2): 231-236.