|
|
[1] |
中华人民共和国生态环境部. 纺织染整工业水污染物排放标准: [S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection. Standard for Pollutant Discharge Textile Dyeing and Finishing Industry [S]. Beijing: China Environmental Science Press, 2015.
|
|
|
[2] |
杨秀贞, 周腾智, 任伯帜. 吸附法处理含锑废水技术进展[J]. 广东化工, 2018, 45(15): 147-148, 152. DOI:10.3969/j.issn.1007-1865.2018.15.065 YANG X Z, ZHOU T Z, REN B Z. Advances in treating antimony-containing wastewater by adsorption[J]. Guangdong Chemical Industry, 2018, 45(15): 147-148, 152. DOI:10.3969/j.issn.1007-1865. 2018.15.065
doi: 10.3969/j.issn.1007-1865. 2018.15.065
|
|
|
[3] |
徐清华, 樊鹏, 董红钰, 等. 吸附法去除水中锑的研究进展综述[J]. 土木与环境工程学报, 2020, 42(6): 143-152. DOI:10.11835/j.issn.2096-6717. 2020.078 XU Q H, FAN P, DONG H Y, et al. A review of the adsorptive removal of antimony from water by various adsorbents[J]. Chinese Journal of Civil and Environmental Engineering, 2020, 42(6): 143-152. DOI:10.11835/j.issn.2096-6717.2020.078
doi: 10.11835/j.issn.2096-6717.2020.078
|
|
|
[4] |
王文龙, 胡洪营, 刘玉红, 等. 混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性[J]. 环境科学学报, 2019, 39(10): 3374-3380. DOI:10.13671/j.hjkxxb. 2019.0276 WANG W L, HU H Y, LIU Y H, et al. Comparative study on the removal of antinomy (Ⅴ) from dyeing and finishing wastewater by conventional and enhanced coagulation[J]. Acta Scientiae Circumstantiae, 2019, 39(10): 3374-3380. DOI:10.13671/j.hjkxxb.2019.0276
doi: 10.13671/j.hjkxxb.2019.0276
|
|
|
[5] |
邓仁健, 金昌盛, 侯保林, 等. 微生物处理含锑重金属废水的研究进展[J]. 环境污染与防治, 2018, 40(4): 465-472. DOI:10.15985/j.cnki.1001-3865.2018.04.020 DENG R J, JIN C S, HOU B L, et al. Research progress of microorganism treating antimony-containing wastewater[J]. Environmental Pollution and Control, 2018, 40(4): 465-472. DOI:10. 15985/j.cnki.1001-3865.2018.04.020
doi: 10. 15985/j.cnki.1001-3865.2018.04.020
|
|
|
[6] |
吴云海, 胡玥, 谢正威. SBR活性污泥吸附水中重金属离子的研究[J]. 水资源保护, 2010, 26(5): 71-74. DOI:10.3969/j.issn.1004-6933.2010.05.017 WU Y H, HU Y, XIE Z W. Study on the adsorption of heavy metal ions from aqueous solution by SBR activated sludge[J]. Water Resources Protection, 2010, 26(5): 71-74. DOI:10.3969/j.issn.1004-6933. 2010.05.017
doi: 10.3969/j.issn.1004-6933. 2010.05.017
|
|
|
[7] |
张华峰. SBR活性污泥法去除火电厂脱硫废水中Cr3+、Cd2+和Pb2+的动态试验研究[D]. 北京: 北京交通大学, 2008. ZHANG H F. Dynamic Study of Removing Cr3+, Cd2+ and Pb2+ from Desulfurization Wastewater of Thermal Power Plant by Bio-Sludge in Sequencing Batch Reactor (SBR) Systems[D]. Beijing: Beijing Jiaotong University, 2008.
|
|
|
[8] |
王利. 铁修饰好氧颗粒污泥对含锑废水中重金属的吸附研究[D]. 上海: 复旦大学, 2014. WANG L. Study on Adsorption of Heavy Metals onto Fe-Modified Aerobic Granular Sludge in Antimony-Containing Wastewater[D]. Shanghai: Fudan University, 2014.
|
|
|
[9] |
李金春子. 强化零价铁还原水中Cr(Ⅵ)效能与机理及含铬泥渣固定化研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. doi:10.18869/acadpub.jafm.68.236.25086 LI J C Z. Efficiency and Mechanism of the Enhancement Reduction of Aqueous Cr(Ⅵ) by Zero-Valent Iron and the Solidification of Chromium in the Sludge and Residue[D]. Harbin: Harbin Institute of Technology, 2016. doi:10.18869/acadpub.jafm.68.236.25086
doi: 10.18869/acadpub.jafm.68.236.25086
|
|
|
[10] |
黎小敏. 磷酸化零价铁去除水体铅及固化土壤铅的研究[D]. 上海: 华东师范大学, 2020. LI X M. Removal of Lead from Water and Solidification of Lead in Contaminated Soil with Phosphorylated Zero-Valent Iron[D]. Shanghai: East China Normal University, 2020.
|
|
|
[11] |
龙向宇, 方振东, 唐然, 等. EPS与阳离子对活性污泥沉降性能的影响研究[J]. 中国给水排水, 2010, 26(13): 50-53. LONG X Y, FANG Z D, TANG R, et al. Effects of EPS and cation on the settleability of activated sludge[J]. China Water & Wastewater, 2010, 26(13): 50-53.
|
|
|
[12] |
李威. 强化硫酸亚铁混凝去除印染废水中锑污染研究[D]. 杭州: 浙江大学, 2019. doi:10.29252/jafm.12.03.28662 LI W. Study on Removal of Antimony Pollution from Dyeing Wastewater by Enhanced Coagulation based on Ferrous Sulfate[D]. Hangzhou: Zhejiang University, 2019. doi:10.29252/jafm.12.03.28662
doi: 10.29252/jafm.12.03.28662
|
|
|
[13] |
史成超, 李威, 李浩铭, 等. 钙强化硫酸亚铁对印染废水中锑的去除研究[J]. 环境污染与防治, 2021, 43(6): 708-711. DOI:10.15985/j.cnki.1001-3865.2021.06.008 SHI C C, LI W, LI H M, et al. Removal of antimony in printing and dyeing wastewater by calcium-enhanced ferrous sulfate[J]. Environmental Pollution & Control, 2021, 43(6): 708-711. DOI:10.15985/j.cnki.1001-3865.2021.06.008
doi: 10.15985/j.cnki.1001-3865.2021.06.008
|
|
|
[14] |
DONG H R, GUAN X H, WANG D S, et al. Individual and combined influence of calcium and anions on simultaneous removal of chromate and arsenate by Fe(Ⅱ) under suboxic conditions[J]. Separation and Purification Technology, 2011, 80(2): 284-292. DOI:10.1016/J.SEPPUR.2011. 05.007
doi: 10.1016/J.SEPPUR.2011. 05.007
|
|
|
[15] |
杨其学. 纳米零价铁、Fe2+和Fe3+对好氧颗粒污泥性能的影响研究[D]. 合肥: 安徽大学, 2020. YANG Q X. Study on Impact of Nanoscale Zero-Valent Iron, Fe2+ and Fe3+ on the Properties of Aerobic Granular Sludge[D]. Hefei: Anhui University, 2020.
|
|
|
[16] |
张国威, 黄建, 崔浩, 等. 活性污泥对Pb(Ⅱ)的吸附机理[J]. 环境工程学报, 2016, 10(7): 3707-3714. DOI:10.12030/j.cjee.201502012 ZHANG G W, HUANG J, CUI H, et al. Sorption mechanisms of Pb(Ⅱ) on activated sludge[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3707-3714. DOI:10.12030/j.cjee. 201502012
doi: 10.12030/j.cjee. 201502012
|
|
|
[17] |
李姗姗, 朱四富, 马丙瑞, 等. Cu2+对序批式反应器中活性污泥胞外聚合物产量及其组分的影响[J]. 中国海洋大学学报(自然科学版), 2020, 50(2): 107-115. DOI:10.16441/j.cnki.hdxb.20190035 LI S S, ZHU S F, MA B R, et al. Effect of Cu2+ on the production and composition of extracellular polymeric substances in the activated sludge from a sequencing batch reactor[J]. Periodical of Ocean University of China, 2020, 50(2): 107-115. DOI:10.16441/j.cnki.hdxb.20190035
doi: 10.16441/j.cnki.hdxb.20190035
|
|
|
[18] |
柴德芳, 宋萍, 申露文, 等. Aeromonas veronii N8不同类型胞外聚合物的性质及其Zn2+吸附特征[J]. 环境科学学报, 2016, 36(10): 3665-3674. DOI:10.13671/j.hjkxxb.2015.0787 CHAI D F, SONG P, SHEN L W, et al. The properties of extracelluar polymeric substances of Aeromonas veronii N8 and its adsorption for Zn2+ [J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3665-3674. DOI:10.13671/j.hjkxxb.2015.0787
doi: 10.13671/j.hjkxxb.2015.0787
|
|
|
[19] |
YANG K, ZHOU J, LOU Z, et al. Removal of Sb(Ⅴ) from aqueous solutions using Fe-Mn binary oxides: The influence of iron oxides forms and the role of manganese oxides[J]. Chemical Engineering Journal, 2018, 354: 577-588. doi:10.1016/j.cej.2018.08.069
doi: 10.1016/j.cej.2018.08.069
|
|
|
[20] |
ABDEL-SAMAD H S, WATSON P R, et al. An XPS study of the adsorption of chromate on goethite (α-FeO(OH))[J]. Applied Surface Science, 1997, 108(3): 371-377. DOI:10.1016/S0169-4332(96)00609-5
doi: 10.1016/S0169-4332(96)00609-5
|
|
|
[21] |
熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeO(OH))的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566. DOI:10.3969/j.issn.1000-6524.2008.06.008 XIONG H X, ZHOU L X. Synthesis of iron oxyhydroxides of different crystal forms and their roles in adsorption and removal of Cr(Ⅵ) from aqueous solutions[J]. Acta Petrologica et Mineralogica, 2008, 27(6): 559-566. DOI:10.3969/j.issn.1000-6524.2008.06.008
doi: 10.3969/j.issn.1000-6524.2008.06.008
|
|
|
[22] |
MITSUNOBU S, TAKAHASHI Y, TERADA Y, et al. Antimony(Ⅴ) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides[J]. Environmental Science & Technology, 2010, 44(10): 3712-3718. DOI:10.1021/es903901e .
doi: 10.1021/es903901e
|
|
|
[23] |
SUN F H, WU F C, LIAO H Q, et al. Biosorption of antimony(Ⅴ) by freshwater cyanobacteria microcystis biomass: Chemical modification and biosorption mechanisms[J]. Chemical Engineering Journal, 2011, 171(3): 1082-1090. DOI:10.1016/j.cej.2011.05.004
doi: 10.1016/j.cej.2011.05.004
|
|
|
[24] |
LIU D F, TAO Y, LI K X, et al. Influence of the presence of three typical surfactants on the adsorption of nickel (Ⅱ) to aerobic activated sludge[J]. Bioresource Technology, 2012, 126(1): 56-63. DOI:10.1016/j.biortech.2012.09.025
doi: 10.1016/j.biortech.2012.09.025
|
|
|
[25] |
LEE B M, SHIN H S, HUR J, et al. Comparison of the characteristics of extracellular polymeric substances for two different extraction methods and sludge formation conditions[J]. Chemosphere, 2013, 90(2): 237-244. DOI:10.1016/j.chemosphere.2012. 06.060
doi: 10.1016/j.chemosphere.2012. 06.060
|
|
|
[26] |
YAN C Z, LI G X, XUE P Y, et al. Competitive effect of Cu(Ⅱ) and Zn(Ⅱ) on the biosorption of lead(Ⅱ) by Myriophyllum spicatum [J]. Journal of Hazardous Materials, 2010, 179(1-3): 721-728. DOI:10.1016/j.jhazmat.2010.03.061
doi: 10.1016/j.jhazmat.2010.03.061
|
|
|
[27] |
刘辉, 李平, 魏雨, 等. 红外光谱技术在铁氧化物形成研究中的应用[J]. 河北师范大学学报(自然科学版), 2005, 29(3): 272-276. DOI:10.3969/j.issn.1000-5854.2005.03.015 LIU H, LI P, WEI Y, et al. Application of IR spectra in the studies on the formation of iron (Hydr) oxides[J]. Journal of Hebei Normal University (Natural Science Edition), 2005, 29(3): 272-276. DOI:10.3969/j.issn.1000-5854.2005.03.015
doi: 10.3969/j.issn.1000-5854.2005.03.015
|
|
|
[28] |
SARIC A, MUSIC S, NOMURA K, et al. Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl3 solutions[J]. Materials Science and Engineering B, 1998, 56(1): 43-52. DOI:10.1016/S0921-5107(98)00212-8
doi: 10.1016/S0921-5107(98)00212-8
|
|
|
[29] |
CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11(4): 265-270.
|
|
|
[30] |
SHANON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. DOI:10.1002/j.1538-7305.1948.tb01338.x
doi: 10.1002/j.1538-7305.1948.tb01338.x
|
|
|
[31] |
SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688. DOI:10.1038/163688a0
doi: 10.1038/163688a0
|
|
|
[32] |
王年, 鲁小璐, 邬梦晓俊, 等. 微生物氧化As(Ⅲ)和Sb(Ⅲ)的研究进展[J]. 微生物学通报, 2016, 44(3): 689-700. DOI:10.13344/j.microbiol.china. 160312 WANG N, LU X L, WU M X J, et al. Progress in microbial oxidation of As(Ⅲ) and Sb(Ⅲ)[J]. 微生物学通报, 2016, 44(3): 689-700. DOI:10.13344/j.microbiol.china.160312
doi: 10.13344/j.microbiol.china.160312
|
|
|