Please wait a minute...
Journal of Zhejiang University (Science Edition)  2023, Vol. 50 Issue (2): 185-194    DOI: 10.3785/j.issn.1008-9497.2023.02.008
Environmental Science     
Study on technology and mechanism of antimony removal by FeSO4 enhanced activated sludge method
Yu HAN1,Chengchao SHI2,Lei CHEN1,Haoran LIU1,Jiaxin YU1,Huixiang SHI1,2()
1.Department of Environmental and Resource,Zhejiang University,Hangzhou 310027,China
2.Jiaxing Environmental Science Research Center,Jiaxing 314000,Zhejiang Province,China
Download: HTML( 0 )   PDF(5868KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to effectively remove low-concentration antimony in the printing and dyeing wastewater, this study adapted FeSO4 enhanced activated sludge method, applying high-throughput sequencing, together with scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS) to reveal the mechanism of removing antimony. The results showed that: (1) FeSO4 enhanced activated sludge group had strong antimony removal performance, the initial antimony concentration was 250 μg·L-1, pH=8, Fe2+ dosage was 90 mg·L-1, the removal efficiency of Sb (Ⅴ) was stable above 60%. At the same time, the different coexisting ions can promote or inhibit the removal rate of Sb (Ⅴ). (2) During the domestication process of adding FeSO4, the abundance and diversity of activated sludge microorganisms decreased, activated sludge particles became looser, specific surface area increased, particle size decreased, and the contact areas between sludge flocs and antimony in water increased, improving the efficiency of antimony removal. Fe2+ was oxidized to α-FeO(OH) in situ in the biochemical process, and combined with a large number of carboxyl or amino groups on the surface of activated sludge, therefore adhered to the surface of activated sludge to realize the adsorption of antimony pollutants.



Key wordsprinting and dyeing wastewater      removal of antimony      FeSO4      activated sludge method     
Received: 21 December 2021      Published: 21 March 2023
CLC:  X 791  
Corresponding Authors: Huixiang SHI     E-mail: huixiang_shi@163.com
Cite this article:

Yu HAN,Chengchao SHI,Lei CHEN,Haoran LIU,Jiaxin YU,Huixiang SHI. Study on technology and mechanism of antimony removal by FeSO4 enhanced activated sludge method. Journal of Zhejiang University (Science Edition), 2023, 50(2): 185-194.

URL:

https://www.zjujournals.com/sci/EN/Y2023/V50/I2/185


FeSO4强化活性污泥法除锑技术研究

针对印染废水中难以去除的低浓度锑,采用FeSO4强化活性污泥法,并结合高通量测序、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)探究其除锑机理。结果表明:(1)FeSO4强化活性污泥法具有较强的除锑性能,当锑初始浓度为250 μg·L-1,pH为8,Fe2+投加量为90 mg·L-1时,Sb(Ⅴ)去除率稳定在60%以上;共存离子对Sb(Ⅴ)去除率有促进或抑制作用。(2)在投加FeSO4的驯化过程中,活性污泥微生物丰度和多样性降低,颗粒更松散、比表面积增大、粒径减小,与锑的接触面积增大,从而提高了除锑效率;Fe2+在生化过程中被原位氧化为α-FeO(OH),与活性污泥表面的大量羧基或氨基团结合,附着在活性污泥表面,实现对锑的吸附。


关键词: 印染废水,  除锑,  FeSO4,  活性污泥法 
Fig.1 Schematic diagram of sequencing batch reactor
Fig.2 Comparison of antimony removal effect between FeSO4 enhanced activated sludge method and control group
Fig.3 Effect of ferrous sulfate dosage on antimony removal varies
Fig.4 Effect of different anions on the removal rate of Sb(Ⅴ)
Fig.5 Cumulative particle size distribution of activated sludge particles
Fig.6 SEM images of activated sludge flocs
Fig.7 XPS of sludge floc C1s
Fig.8 XPS of sludge flocs O1s and Sb3d
Fig.9 XPS of sludge floc Fe2p
Fig.10 FTIR images of activated sludge flocs
Fig.11 Histogram of phylum level of different samples of Bacteria
Fig.12 Histogram of taxonomic level of different samples of Bacteria
[1]   中华人民共和国生态环境部. 纺织染整工业水污染物排放标准: [S]. 北京: 中国环境科学出版社, 2015.
Ministry of Environmental Protection. Standard for Pollutant Discharge Textile Dyeing and Finishing Industry [S]. Beijing: China Environmental Science Press, 2015.
[2]   杨秀贞, 周腾智, 任伯帜. 吸附法处理含锑废水技术进展[J]. 广东化工, 2018, 45(15): 147-148, 152. DOI:10.3969/j.issn.1007-1865.2018.15.065
YANG X Z, ZHOU T Z, REN B Z. Advances in treating antimony-containing wastewater by adsorption[J]. Guangdong Chemical Industry, 2018, 45(15): 147-148, 152. DOI:10.3969/j.issn.1007-1865. 2018.15.065
doi: 10.3969/j.issn.1007-1865. 2018.15.065
[3]   徐清华, 樊鹏, 董红钰, 等. 吸附法去除水中锑的研究进展综述[J]. 土木与环境工程学报, 2020, 42(6): 143-152. DOI:10.11835/j.issn.2096-6717. 2020.078
XU Q H, FAN P, DONG H Y, et al. A review of the adsorptive removal of antimony from water by various adsorbents[J]. Chinese Journal of Civil and Environmental Engineering, 2020, 42(6): 143-152. DOI:10.11835/j.issn.2096-6717.2020.078
doi: 10.11835/j.issn.2096-6717.2020.078
[4]   王文龙, 胡洪营, 刘玉红, 等. 混凝和强化混凝对印染废水中锑(Ⅴ)的去除特性[J]. 环境科学学报, 2019, 39(10): 3374-3380. DOI:10.13671/j.hjkxxb. 2019.0276
WANG W L, HU H Y, LIU Y H, et al. Comparative study on the removal of antinomy (Ⅴ) from dyeing and finishing wastewater by conventional and enhanced coagulation[J]. Acta Scientiae Circumstantiae, 2019, 39(10): 3374-3380. DOI:10.13671/j.hjkxxb.2019.0276
doi: 10.13671/j.hjkxxb.2019.0276
[5]   邓仁健, 金昌盛, 侯保林, 等. 微生物处理含锑重金属废水的研究进展[J]. 环境污染与防治, 2018, 40(4): 465-472. DOI:10.15985/j.cnki.1001-3865.2018.04.020
DENG R J, JIN C S, HOU B L, et al. Research progress of microorganism treating antimony-containing wastewater[J]. Environmental Pollution and Control, 2018, 40(4): 465-472. DOI:10. 15985/j.cnki.1001-3865.2018.04.020
doi: 10. 15985/j.cnki.1001-3865.2018.04.020
[6]   吴云海, 胡玥, 谢正威. SBR活性污泥吸附水中重金属离子的研究[J]. 水资源保护, 2010, 26(5): 71-74. DOI:10.3969/j.issn.1004-6933.2010.05.017
WU Y H, HU Y, XIE Z W. Study on the adsorption of heavy metal ions from aqueous solution by SBR activated sludge[J]. Water Resources Protection, 2010, 26(5): 71-74. DOI:10.3969/j.issn.1004-6933. 2010.05.017
doi: 10.3969/j.issn.1004-6933. 2010.05.017
[7]   张华峰. SBR活性污泥法去除火电厂脱硫废水中Cr3+、Cd2+和Pb2+的动态试验研究[D]. 北京: 北京交通大学, 2008.
ZHANG H F. Dynamic Study of Removing Cr3+, Cd2+ and Pb2+ from Desulfurization Wastewater of Thermal Power Plant by Bio-Sludge in Sequencing Batch Reactor (SBR) Systems[D]. Beijing: Beijing Jiaotong University, 2008.
[8]   王利. 铁修饰好氧颗粒污泥对含锑废水中重金属的吸附研究[D]. 上海: 复旦大学, 2014.
WANG L. Study on Adsorption of Heavy Metals onto Fe-Modified Aerobic Granular Sludge in Antimony-Containing Wastewater[D]. Shanghai: Fudan University, 2014.
[9]   李金春子. 强化零价铁还原水中Cr(Ⅵ)效能与机理及含铬泥渣固定化研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. doi:10.18869/acadpub.jafm.68.236.25086
LI J C Z. Efficiency and Mechanism of the Enhancement Reduction of Aqueous Cr(Ⅵ) by Zero-Valent Iron and the Solidification of Chromium in the Sludge and Residue[D]. Harbin: Harbin Institute of Technology, 2016. doi:10.18869/acadpub.jafm.68.236.25086
doi: 10.18869/acadpub.jafm.68.236.25086
[10]   黎小敏. 磷酸化零价铁去除水体铅及固化土壤铅的研究[D]. 上海: 华东师范大学, 2020.
LI X M. Removal of Lead from Water and Solidification of Lead in Contaminated Soil with Phosphorylated Zero-Valent Iron[D]. Shanghai: East China Normal University, 2020.
[11]   龙向宇, 方振东, 唐然, 等. EPS与阳离子对活性污泥沉降性能的影响研究[J]. 中国给水排水, 2010, 26(13): 50-53.
LONG X Y, FANG Z D, TANG R, et al. Effects of EPS and cation on the settleability of activated sludge[J]. China Water & Wastewater, 2010, 26(13): 50-53.
[12]   李威. 强化硫酸亚铁混凝去除印染废水中锑污染研究[D]. 杭州: 浙江大学, 2019. doi:10.29252/jafm.12.03.28662
LI W. Study on Removal of Antimony Pollution from Dyeing Wastewater by Enhanced Coagulation based on Ferrous Sulfate[D]. Hangzhou: Zhejiang University, 2019. doi:10.29252/jafm.12.03.28662
doi: 10.29252/jafm.12.03.28662
[13]   史成超, 李威, 李浩铭, 等. 钙强化硫酸亚铁对印染废水中锑的去除研究[J]. 环境污染与防治, 2021, 43(6): 708-711. DOI:10.15985/j.cnki.1001-3865.2021.06.008
SHI C C, LI W, LI H M, et al. Removal of antimony in printing and dyeing wastewater by calcium-enhanced ferrous sulfate[J]. Environmental Pollution & Control, 2021, 43(6): 708-711. DOI:10.15985/j.cnki.1001-3865.2021.06.008
doi: 10.15985/j.cnki.1001-3865.2021.06.008
[14]   DONG H R, GUAN X H, WANG D S, et al. Individual and combined influence of calcium and anions on simultaneous removal of chromate and arsenate by Fe(Ⅱ) under suboxic conditions[J]. Separation and Purification Technology, 2011, 80(2): 284-292. DOI:10.1016/J.SEPPUR.2011. 05.007
doi: 10.1016/J.SEPPUR.2011. 05.007
[15]   杨其学. 纳米零价铁、Fe2+和Fe3+对好氧颗粒污泥性能的影响研究[D]. 合肥: 安徽大学, 2020.
YANG Q X. Study on Impact of Nanoscale Zero-Valent Iron, Fe2+ and Fe3+ on the Properties of Aerobic Granular Sludge[D]. Hefei: Anhui University, 2020.
[16]   张国威, 黄建, 崔浩, 等. 活性污泥对Pb(Ⅱ)的吸附机理[J]. 环境工程学报, 2016, 10(7): 3707-3714. DOI:10.12030/j.cjee.201502012
ZHANG G W, HUANG J, CUI H, et al. Sorption mechanisms of Pb(Ⅱ) on activated sludge[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3707-3714. DOI:10.12030/j.cjee. 201502012
doi: 10.12030/j.cjee. 201502012
[17]   李姗姗, 朱四富, 马丙瑞, 等. Cu2+对序批式反应器中活性污泥胞外聚合物产量及其组分的影响[J]. 中国海洋大学学报(自然科学版), 2020, 50(2): 107-115. DOI:10.16441/j.cnki.hdxb.20190035
LI S S, ZHU S F, MA B R, et al. Effect of Cu2+ on the production and composition of extracellular polymeric substances in the activated sludge from a sequencing batch reactor[J]. Periodical of Ocean University of China, 2020, 50(2): 107-115. DOI:10.16441/j.cnki.hdxb.20190035
doi: 10.16441/j.cnki.hdxb.20190035
[18]   柴德芳, 宋萍, 申露文, 等. Aeromonas veronii N8不同类型胞外聚合物的性质及其Zn2+吸附特征[J]. 环境科学学报, 2016, 36(10): 3665-3674. DOI:10.13671/j.hjkxxb.2015.0787
CHAI D F, SONG P, SHEN L W, et al. The properties of extracelluar polymeric substances of Aeromonas veronii N8 and its adsorption for Zn2+ [J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3665-3674. DOI:10.13671/j.hjkxxb.2015.0787
doi: 10.13671/j.hjkxxb.2015.0787
[19]   YANG K, ZHOU J, LOU Z, et al. Removal of Sb(Ⅴ) from aqueous solutions using Fe-Mn binary oxides: The influence of iron oxides forms and the role of manganese oxides[J]. Chemical Engineering Journal, 2018, 354: 577-588. doi:10.1016/j.cej.2018.08.069
doi: 10.1016/j.cej.2018.08.069
[20]   ABDEL-SAMAD H S, WATSON P R, et al. An XPS study of the adsorption of chromate on goethite (α-FeO(OH))[J]. Applied Surface Science, 1997, 108(3): 371-377. DOI:10.1016/S0169-4332(96)00609-5
doi: 10.1016/S0169-4332(96)00609-5
[21]   熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeO(OH))的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566. DOI:10.3969/j.issn.1000-6524.2008.06.008
XIONG H X, ZHOU L X. Synthesis of iron oxyhydroxides of different crystal forms and their roles in adsorption and removal of Cr(Ⅵ) from aqueous solutions[J]. Acta Petrologica et Mineralogica, 2008, 27(6): 559-566. DOI:10.3969/j.issn.1000-6524.2008.06.008
doi: 10.3969/j.issn.1000-6524.2008.06.008
[22]   MITSUNOBU S, TAKAHASHI Y, TERADA Y, et al. Antimony(Ⅴ) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides[J]. Environmental Science & Technology, 2010, 44(10): 3712-3718. DOI:10.1021/es903901e .
doi: 10.1021/es903901e
[23]   SUN F H, WU F C, LIAO H Q, et al. Biosorption of antimony(Ⅴ) by freshwater cyanobacteria microcystis biomass: Chemical modification and biosorption mechanisms[J]. Chemical Engineering Journal, 2011, 171(3): 1082-1090. DOI:10.1016/j.cej.2011.05.004
doi: 10.1016/j.cej.2011.05.004
[24]   LIU D F, TAO Y, LI K X, et al. Influence of the presence of three typical surfactants on the adsorption of nickel (Ⅱ) to aerobic activated sludge[J]. Bioresource Technology, 2012, 126(1): 56-63. DOI:10.1016/j.biortech.2012.09.025
doi: 10.1016/j.biortech.2012.09.025
[25]   LEE B M, SHIN H S, HUR J, et al. Comparison of the characteristics of extracellular polymeric substances for two different extraction methods and sludge formation conditions[J]. Chemosphere, 2013, 90(2): 237-244. DOI:10.1016/j.chemosphere.2012. 06.060
doi: 10.1016/j.chemosphere.2012. 06.060
[26]   YAN C Z, LI G X, XUE P Y, et al. Competitive effect of Cu(Ⅱ) and Zn(Ⅱ) on the biosorption of lead(Ⅱ) by Myriophyllum spicatum [J]. Journal of Hazardous Materials, 2010, 179(1-3): 721-728. DOI:10.1016/j.jhazmat.2010.03.061
doi: 10.1016/j.jhazmat.2010.03.061
[27]   刘辉, 李平, 魏雨, 等. 红外光谱技术在铁氧化物形成研究中的应用[J]. 河北师范大学学报(自然科学版), 2005, 29(3): 272-276. DOI:10.3969/j.issn.1000-5854.2005.03.015
LIU H, LI P, WEI Y, et al. Application of IR spectra in the studies on the formation of iron (Hydr) oxides[J]. Journal of Hebei Normal University (Natural Science Edition), 2005, 29(3): 272-276. DOI:10.3969/j.issn.1000-5854.2005.03.015
doi: 10.3969/j.issn.1000-5854.2005.03.015
[28]   SARIC A, MUSIC S, NOMURA K, et al. Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl3 solutions[J]. Materials Science and Engineering B, 1998, 56(1): 43-52. DOI:10.1016/S0921-5107(98)00212-8
doi: 10.1016/S0921-5107(98)00212-8
[29]   CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11(4): 265-270.
[30]   SHANON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423. DOI:10.1002/j.1538-7305.1948.tb01338.x
doi: 10.1002/j.1538-7305.1948.tb01338.x
[31]   SIMPSON E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688. DOI:10.1038/163688a0
doi: 10.1038/163688a0
[32]   王年, 鲁小璐, 邬梦晓俊, 等. 微生物氧化As(Ⅲ)和Sb(Ⅲ)的研究进展[J]. 微生物学通报, 2016, 44(3): 689-700. DOI:10.13344/j.microbiol.china. 160312
WANG N, LU X L, WU M X J, et al. Progress in microbial oxidation of As(Ⅲ) and Sb(Ⅲ)[J]. 微生物学通报, 2016, 44(3): 689-700. DOI:10.13344/j.microbiol.china.160312
doi: 10.13344/j.microbiol.china.160312
[1] Chuchen ZHOU,Cheng LI,Jianying QIAN,Kunlun YANG,Yunxuan HU,Xinhua XU. The study of antimony (V) adsorption by commercial iron oxide red[J]. Journal of Zhejiang University (Science Edition), 2022, 49(2): 201-209.