Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (5): 584-597    DOI: 10.3785/j.issn.1008-9497.2022.05.010
地球科学     
晚更新世以来杭州湾沉积物黏土矿物特征及其古环境意义
黄冬琴1,高秦1,厉子龙1(),杨师航2,洪晨3,A M Piotrowski4,孙淼军5,李川1
1.浙江大学 海洋学院,浙江 舟山 316021
2.杭州国海海洋工程勘测设计研究院,浙江 杭州 310012
3.浙江大学 地球科学学院,浙江 杭州 310027
4.剑桥大学 地球科学系,英国 剑桥 CB2 3EQ
5.中国电建集团华东勘测设计研究院,浙江 杭州 310014
Characteristics of clay minerals in sediments of Hangzhou Bay since the Late Pleistocene and their paleoenvironmental significance
Dongqin HUANG1,Qin GAO1,Zilong LI1(),Shihang YANG2,Chen HONG3,PIOTROWSKI A M4,Miaojun SUN5,Chuan LI1
1.Ocean College,Zhejiang University,Zhoushan 316021,Zhejiang Province,China
2.Hangzhou Guohai Marine Engineering Survey and Design Institute,Hangzhou 310012,China
3.School of Earth Sciences,Zhejiang University,Hangzhou 310027,China
4.Department of Earth Sciences,University of Cambridge,Cambridge CB2 3EQ,UK
5.Power China Huadong Engineering Corporation Limited,Hangzhou 310014,China
 全文: PDF(3705 KB)   HTML( 5 )
摘要:

通过对杭州湾南岸HZW1907长84 m及甬江口YJ19-02长9 m柱状样进行粒度分析、X射线衍射(XRD)分析,研究了沉积物粒度变化、黏土矿物特征,探讨杭州湾地区晚更新世以来源区风化程度、水动力条件变化、物质来源及环境演变情况。根据岩性粒度特征及黏土矿物变化规律,将HZW1907柱状样划分为4个沉积阶段:阶段1(0~26 m)、阶段2(26~49 m)、阶段3(49~70 m)、阶段4(70~84 m)。阶段4和3处于晚更新世至早全新世,沉积物以粉砂、砂质粉砂、粉砂质砂为主,处于湖泊河床相、泛滥平原相沉积,水动力条件较强。阶段4黏土矿物组合较复杂,高岭石、蒙皂石占比异常高,阶段3以伊利石—绿泥石—高岭石—蒙皂石组合类型为主,2个阶段沉积物受钱塘江物质输入影响巨大,同时部分受长江物质影响,气候环境由温暖湿润转为温凉偏湿,源区经历较强风化过程。阶段2和1沉积物主要由粉砂组成,粒度较细,水动力条件较弱,处于近岸潮坪相及河口湾相沉积,黏土矿物组合类型均以伊利石—绿泥石—高岭石—蒙皂石为主,指示全新世(约10.8 ka BP)以来杭州湾沉积物主要受长江物质输入影响,经历温凉偏湿—冷凉干燥的环境,源区风化程度较弱。甬江口YJ19-02柱状样沉积物类型为粉砂及砂质粉砂,水动力条件较弱,黏土矿物组合类型为伊利石—绿泥石—高岭石—蒙皂石,沉积物主要由长江物质输入,处于相对稳定、偏寒冷干燥的环境,源区风化过程较弱。柱状沉积物粒度、黏土矿物在垂向上的变化及组合特征为研究区及邻区沉积物的物质来源及古环境状况提供了有效指示。

关键词: 杭州湾黏土矿物物质来源古环境晚更新世    
Abstract:

The grain-size variation and clay mineral characteristics of sediments in the cores of HZW1907 (84 m) near the south bank of the Hangzhou Bay and YJ19-02 (9 m) near the Yongjiang Estuary are studied by grain-size measurement and X-ray diffraction (XRD) analysis, in order to investigate the weathering degree, hydrodynamic variation, material source and sedimentary environmental evolution of the Hangzhou Bay since the Late Pleistocene. According to the grain-size characteristics and clay mineral changes, the HZW1907 core can be divided into four sedimentary stages, i.e., stage 1 (0~26 m), stage 2 (26~49 m), stage 3 (49~70 m) and stage 4 (70~84 m). The sediments from stage 4 and stage 3 were formed at the Late Pleistocene-Early Holocene, composed of are mainly silt, sandy silt and silty sand, which indicated that they were formed under the lake -riverbed phase facies and floodplain facie, with strong hydrodynamic conditions. The clay mineral assemblages in stage 4 were more complex, having abnormally rich kaolinite and smectite. The clay mineral assemblage type of the stage 3 was mainly composed of illite-chlorite-kaolinite-smectite. The sediments from the above two stages were greatly affected by the source of the Qiantang River, and by the source of the Yangtze River partly. It appeared that the climate environment changed from warm and humid to less warm and wet, and the source area experienced strong weathering. The sediments from the stage 2 and stage 1 were mainly composed of fine-grain silt, with weak hydrodynamic conditions, and were located in near-shore tidal flats facies and estuarine facies. The dominant type of their clay mineral assemblage was illite-chlorite-kaolinite-smectite, indicating that the Hangzhou Bay were mainly affected by the materials of the Yangtze River since the Holocene (ca. 10.8 ka BP), and experienced the environmental changes from mild and slightly dry to cold and dry conditions. The weathering degree in the source area was relatively weak. The sediments of the core YJ19-02 were silt and sandy silt, and had clay mineral assemblage of illite-chlorite-kaolinite-smectite, indicating the weak hydrodynamic conditions. The sediments were mainly from the Yangtze River, indicating a relatively stable, cold and dry sedimentary environment, and the source area underwent weak weathering. The vertical variation and assemblage characteristics of grain-sizes and clay minerals in sediments of the cores provide effective indicators for the material source and paleoenvironment in the study area and adjacent area.

Key words: Hangzhou Bay    clay minerals    material source    paleoenvironment    Late Pleistocene
收稿日期: 2021-07-26 出版日期: 2022-09-14
CLC:  P 736  
基金资助: 国家自然科学基金重点项目(91858213);浙江大学教育基金世界顶尖大学合作计划(100000-11320);华东勘测设计研究院科研项目(HDY-CG25-2022004);舟山市科技局科研项目(2022C13039)
通讯作者: 厉子龙     E-mail: zilongli@zju.edu.cn
作者简介: 黄冬琴(1996—),ORCID:https://orcid.org/0000-0002-3622-9187,女,硕士,主要从事地球化学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄冬琴
高秦
厉子龙
杨师航
洪晨
A M Piotrowski
孙淼军
李川

引用本文:

黄冬琴,高秦,厉子龙,杨师航,洪晨,A M Piotrowski,孙淼军,李川. 晚更新世以来杭州湾沉积物黏土矿物特征及其古环境意义[J]. 浙江大学学报(理学版), 2022, 49(5): 584-597.

Dongqin HUANG,Qin GAO,Zilong LI,Shihang YANG,Chen HONG,PIOTROWSKI A M,Miaojun SUN,Chuan LI. Characteristics of clay minerals in sediments of Hangzhou Bay since the Late Pleistocene and their paleoenvironmental significance. Journal of Zhejiang University (Science Edition), 2022, 49(5): 584-597.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.05.010        https://www.zjujournals.com/sci/CN/Y2022/V49/I5/584

图1  杭州湾及邻近海域区域环流模式及HZW1907和YJ19-02孔沉积物取样站位(a) 区域环流模式 (b) 钻孔位置流系:CDW-长江冲淡水;YSCC-黄海沿岸流;ECSCC-东海沿岸流;YSWC-黄海暖流;TWC-台湾暖流;KC-黑潮。
图2  HZW1907与YJ19-02孔沉积物粒度特征
图3  杭州湾南岸HZW1907孔年代框架及水动力变化15,26和37 m年龄数据源自文献[21-22];东海海平面变化数据源自文献[11]。
钻孔编号深度/m样品数/个粒度中值/μm
最大值最小值平均值
HZW19070~262431.19.118.6
26~492319.03.17.6
49~7021203.09.591.6
70~8414270.87.868.0
YJ19-020~9941.39.324.6
表1  HZW1907与YJ19-02孔沉积物粒度参数
图4  HZW1907及YJ19-02孔黏土矿物典型XRD图谱

钻孔

编号

深度/m阶段样品数/个占比/%S/ICI
蒙皂石伊利石高岭石绿泥石伊利石+绿泥石
HZW19070~26124最大值13821224950.210.63
最小值060413800.000.30
平均值572717880.070.44
26~49223最大值6801222940.090.85
最小值066613850.000.30
平均值371917880.040.46
49~70321最大值10741828890.170.74
最小值0541014800.000.26
平均值2651320850.040.49
70~84414最大值42634212681.261.94
最小值933163360.210.33
平均值2841238490.730.83
YJ19-020~9/9最大值6741019880.090.45
最小值366714850.040.30
平均值571916870.070.39
表2  HZW1907及YJ19-02孔沉积物黏土矿物组合
图5  HZW1907与YJ19-02孔各黏土矿物占比及变化特征
图6  HZW1907孔黏土矿物组合类型
图 7  HZW1907与YJ19-02孔沉积水动力分区
图 8  我国东南部各主要河流物质与研究区沉积物黏土矿物组合分布三角图解A:类长江型沉积物;B:类黄河型沉积物;C:类台湾型沉积物(浙江沿岸[27];杭州湾[4, 27, 29];钱塘江[4, 30];长江[8, 9, 10; 31-32];长江口[28, 33];黄河[8, 28, 31-32];东海[12, 28];台湾西部[34];闽江[35-36])。
图9  中国东南部各主要河流与研究区沉积物黏土矿物参数浙江沿岸[27];杭州湾[4, 27, 29];钱塘江[4, 30];长江[8, 9, 10; 31-32];长江口[28, 33];黄河[8, 28, 31-32];东海[12, 28];台湾西部[34];闽江[35-36]。
1 PANG H J, LYU S S, CHEN X G, et al. Heavy metal distribution and accumulation in the Spartina Alterniflora from the Andong tidal flat, Hangzhou Bay, China[J]. Environmental Earth Sciences, 2017, 76(17): 1-14. DOI:10.1007/s12665-017-6948-3
doi: 10.1007/s12665-017-6948-3
2 CHAMLEY H. Clay Sedimentology[M]. Berlin: Springer, 1989. doi:10.1007/978-3-642-85916-8
doi: 10.1007/978-3-642-85916-8
3 LI J R, LIU S F, SHI X F, et al. Clay minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments: Implications for sediment provenance and climate control since 40 ka[J]. Quaternary International, 2018, 493(10): 50-58. DOI:10.1016/j.quaint.2018.06.044
doi: 10.1016/j.quaint.2018.06.044
4 LIU J Q, CAO K, YIN P, et al. The sources and transport patterns of modern sediments in Hangzhou Bay: Evidence from clay minerals[J]. Journal of Ocean University of China, 2018, 17(6): 1352-1360. DOI:10.1007/s11802-018-3710-8
doi: 10.1007/s11802-018-3710-8
5 LIU R, MEI X, ZHANG J, et al. Characteristics of clay minerals in sediments of Hemudu area, Zhejiang, China in Holocene and their environmental significance[J]. China Geology, 2019, 2(1): 8-15. DOI:10.31035/cg2018069
doi: 10.31035/cg2018069
6 MA C Y, CHEN J, ZHOU Y J, et al. Clay minerals in the major Chinese coastal estuaries and their provenance implications[J]. Frontiers of Earth Science in China, 2010, 4(4): 449-456. DOI:10. 1007/s11707-010-0130-5
doi: 10. 1007/s11707-010-0130-5
7 朱凤冠. 东海陆架区全新世地层中黏土矿物[J]. 东海海洋, 1985, 3(4): 32-43.
ZHU F G. Clay minerals of the East China Sea shelf area in the recent epoch stratum[J]. Donghai Marine Science, 1985, 3(4): 32-43.
8 杨作升. 黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系[J]. 海洋与湖沼, 1988, 19(4): 336-346.
YANG Z S. Mineralogical assemblages and chemical characteristics of clays from in the sediments of the Yellow River, Yangtze River and Pearl River and their relationship with the climatic environment in the provenance region[J]. Oceanologia et Limnologia Sinica, 1988, 19(4): 336-346.
9 WANG Q, YANG S Y. Clay mineralogy indicates the Holocene monsoon climate in the Changjiang (Yangtze River) catchment, China[J]. Applied Clay Science, 2013, 74: 28-36. DOI:10.1016/j.clay. 2012.08.011
doi: 10.1016/j.clay. 2012.08.011
10 ZHAO Y F, ZOU X Q, GAO J H, et al. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea[J]. Journal of Asian Earth Sciences, 2017, 152: 91-102. DOI:10. 1016/j.jseaes.2017.11.038
doi: 10. 1016/j.jseaes.2017.11.038
11 李家彪, 丁巍伟, 吴自银, 等. 东海的来历[J]. 中国科学: 地球科学, 2017, 47(4): 406-411. DOI:10. 1360/N072017-00006
LI J B, DING W W, WU Z Y, et al. Origin of the East China Sea[J]. SCIENTIA SINICA Terrae, 2017, 47(4): 406-411. DOI:10.1360/N072017-00006
doi: 10.1360/N072017-00006
12 LIU S F, SHI X F, FANG X S, et al. Spatial and temporal distributions of clay minerals in mud deposits on the inner shelf of the East China Sea: Implications for paleoenvironmental changes in the Holocene[J]. Quaternary International, 2014, 349: 270-279. DOI:10.1016/j.quaint.2014.07.016
doi: 10.1016/j.quaint.2014.07.016
13 章伟艳, 张霄宇, 金海燕, 等. 长江口—杭州湾及其邻近海域沉积动力环境及物源分析[J]. 地理学报, 2013, 68(5): 640-650. DOI:10.11821/xb201305006
ZHANG W Y, ZHANG X Y, JIN H Y, et al. Dynamic sedimentary environment and the provenance characteristics in Yangtze River Estuary-Hangzhou Bay and its adjacent waters[J]. Acta Geographica Sinica, 2013, 68(5): 640-650. DOI:10.11821/xb201305006
doi: 10.11821/xb201305006
14 XIE D F, GAO S, WANG Z B, et al. Numerical modeling of tidal currents, sediment transport and morphological evolution in Hangzhou Bay, China [J]. International Journal of Sediment Research, 2013, 28(3): 316-328. DOI:10.1016/S1001-6279(13)60042-6
doi: 10.1016/S1001-6279(13)60042-6
15 蒯宇, 陶建峰, 张青, 等. 甬江及口外海域潮流泥沙数值模拟[J]. 水运工程, 2017(7): 58-67. DOI:10.3969/j.issn.1002-4972.2017.07.013
KUAI Y, TAO J F, ZHANG Q, et al. Numerical simulation on the tidal current and sediment for the Yongjiang River and out sea area[J]. Port and Waterway Engineering, 2017(7): 58-67. DOI:10. 3969/j.issn.1002-4972.2017.07.013
doi: 10. 3969/j.issn.1002-4972.2017.07.013
16 LI F P, MAO L C, JIA Y B, et al. Distribution and risk assessment of trace metals in sediments from Yangtze River Estuary and Hangzhou Bay, China[J]. Environmental Science and Pollution Research, 2017, 25(1): 855-866. DOI:10.1007/s11356-017-0425-0
doi: 10.1007/s11356-017-0425-0
17 SONG Z K, SHI W Y, ZHANG J B, et al. Transport mechanism of suspended sediments and migration trends of sediments in the central Hangzhou Bay[J]. Water, 2020, 12(8): 2189. DOI:10.3390/w12082189
doi: 10.3390/w12082189
18 FOLK R L, ANDREWS P B, LEWIS D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. DOI:10.1080/00288306.1970.10418211
doi: 10.1080/00288306.1970.10418211
19 JOHNS W D, GRIM R E, BRADLEY W F. Quantitative estimations of clay minerals by diffraction methods[J]. Journal of Sedimentary Research, 1954, 24(4): 242-251. DOI:10.1306/D42697B5-2B26-11D7-8648000102C1865D
doi: 10.1306/D42697B5-2B26-11D7-8648000102C1865D
20 BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. DOI:10. 1130/0016-7606(1965)76 [803:MASORD]2.0.CO;2
doi: 10. 1130/0016-7606(1965)76
21 陈杰. 宁波慈溪地区全新世沉积环境演化:钱塘江河口古下切河谷填充过程及其物源演变[D]. 上海: 华东师范大学, 2020.
CHEN J. The Evolution of Holocene Sedimentary Environment in Cixi of Ningbo Coast: In Filling Processes and Sourcing Provenance in the Incised Qiantang Esturine Valley[D]. Shanghai: East China Normal University, 2020.
22 张霞, 林春明, 杨守业, 等. 晚第四纪钱塘江下切河谷充填物物源特征[J]. 古地理学报, 2018, 20(5): 877-892. DOI:10.7605/gdlxb.2018.05.062
ZHANG X, LIN C M, YANG S Y, et al. Provenance for the late Quaternary Qiantang River incised-valley fill[J]. Journal of Palaeogeography, 2018, 20(5): 877-892. DOI:10.7605/gdlxb. 2018.05.062
doi: 10.7605/gdlxb. 2018.05.062
23 宁泽, 张勇, 林学辉, 等. 闽北近岸海域表层沉积物的风化特征及物源指示[J]. 海洋地质前沿, 2020, 36(10): 12-21. DOI:10.16028/j.1009-2722.2020.055
NING Z, ZHANG Y, LIN X H, et al. Weathering characteristics and provenance of the surface sediments in the offshore of northern Fujian[J]. Marine Geology Frontiers, 2020, 36(10): 12-21. DOI:10.16028/j.1009-2722.2020.055
doi: 10.16028/j.1009-2722.2020.055
24 PEJRUP M. The triangular diagram used for classification of estuarine sediments: A new approach[J]. Tide-Influenced Sedimentary Environments and Facies, 1988: 289-300. doi:10.1007/978-94-015-7762-5_21
doi: 10.1007/978-94-015-7762-5_21
25 WAN S M, LI A C, CLIFT P D, et al. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3/4): 561-582. DOI:10. 1016/j.palaeo.2007.07.009
doi: 10. 1016/j.palaeo.2007.07.009
26 黄龙, 王中波, 耿威, 等. 东海东北部海域表层沉积物黏土矿物来源及输运[J]. 地球科学, 2020, 45(7): 2722-2734. DOI:10.3799/dqkx.2020.046
HUANG L, WANG Z B, GENG W, et al. Sources and transport of clay minerals in surface sediments of the northeastern East China Sea[J]. Earth Science, 2020, 45(7): 2722-2734. DOI:10.3799/dqkx. 2020.046
doi: 10.3799/dqkx. 2020.046
27 周晓静, 高抒, 贾建军. 长江黏土矿物示踪标记稳定性的初步研究[J]. 海洋与湖沼, 2003, 34(6): 683-692. DOI:10.3321/j.issn:0029-814X.2003.06.013
ZHOU X J, GAO S, JIA J J. Preliminary evaluation of the stability of Changjiang clay minerals as fingerprints for material source tracing[J]. Oceanologia et Limnologia Sinica, 2003, 34(6): 683-692. DOI:10. 3321/j.issn:0029-814X.2003.06.013
doi: 10. 3321/j.issn:0029-814X.2003.06.013
28 LI Y, LI A C, HUANG P, et al. Clay minerals in surface sediment of the north Yellow Sea and their implication to provenance and transportation[J]. Continental Shelf Research, 2014, 90: 33-40. DOI:10.1016/j.csr.2014.01.020
doi: 10.1016/j.csr.2014.01.020
29 LIN C K. Quantity and transport of sediment at the Yangtze River Estuary[J]. Science in China, Series A, 1988, 31(12): 1495-1507.
30 张志忠, 徐志刚. 钱塘江河口沉积作用初探[J]. 海洋科学, 1987,11(3): 10-15.
ZHANG Z Z, XU Z G. An approach to the sedimentation in Qiantangjiang estuary[J]. Marine Sciences, 1987,11(3): 10-15.
31 范德江, 杨作升, 毛登, 等. 长江与黄河沉积物中黏土矿物及地化成分的组成[J]. 海洋地质与第四纪地质, 2001, 21(4): 7-12. DOI:10.16562/j.cnki.0256-1492.2001.04.002
FAN D J, YANG Z S, MAO D, et al. Clay minerals and geochemistry of the sediments from the Yangtze and Yellow Rivers[J]. Marine Geology and Quaternary Geology, 2001, 21(4): 7-12. DOI:10. 16562/j.cnki.0256-1492.2001.04.002
doi: 10. 16562/j.cnki.0256-1492.2001.04.002
32 YANG S Y, JUNG H S, LIM D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 2003, 63(1/2): 93-120. DOI:10.1016/S0012-8252(03)00033-3
doi: 10.1016/S0012-8252(03)00033-3
33 师育新, 戴雪荣, 付苗苗, 等. 澄湖SC7孔沉积物黏土矿物特征及其古地理意义[J]. 沉积学报, 2010, 28(2): 339-345. DOI:10.14027/j.cnki.cjxb.2010. 02.006
SHI Y X, DAI X R, FU M M, et al. Clay mineral characteristics of SC7 core sediments from Chenghu Lake (Suzhou) and their paleogeographic significance[J]. Acta Sedimentologica Sinica, 2010, 28(2): 339-345. DOI:10.14027/j.cnki.cjxb.2010.02.006
doi: 10.14027/j.cnki.cjxb.2010.02.006
34 LI C S, SHI X F, KAO S J, et al. Clay mineral composition and their sources for the fluvial sediments of Taiwanese Rivers[J]. Chinese Science Bulletin, 2012, 57(6): 673-681. DOI:10.1007/s11434-011-4824-1
doi: 10.1007/s11434-011-4824-1
35 徐勇航, 陈坚, 王爱军, 等. 台湾海峡表层沉积物中黏土矿物特征及物质来源[J]. 沉积学报, 2013, 31(1): 120-129. DOI:10.14027/j.cnki.cjxb.2013. 01.008
XU Y H, CHEN J, WANG A J, et al. Clay minerals in surface sediments of the Taiwan Strait and their provenance[J]. Acta Sedimentologica Sinica, 2013, 31(1): 120-129. DOI:10.14027/j.cnki.cjxb.2013. 01.008
doi: 10.14027/j.cnki.cjxb.2013. 01.008
36 冯华, 高爱国, 朱旭旭, 等. 闽江下游及河口区表层沉积物黏土矿物含量分布特征及其环境意义[J]. 应用海洋学学报, 2014, 33(3): 418-424. DOI:10. 3969/J.ISSN.2095-4972.2014.03.018
FENG H, GAO A G, ZHU X X, et al. Distribution characteristic of clay minerals contents in Minjiang River and its environmental significance[J]. Journal of Applied Oceanography, 2014, 33(3): 418-424. DOI:10.3969/J.ISSN.2095-4972.2014.03.018
doi: 10.3969/J.ISSN.2095-4972.2014.03.018
37 GUO J H, PYLES C, KRUGH W, et al. Clay minerals in the late quaternary sediment of Tulare Lake, California: Implications for climate change, weathering, and erosion processes[J]. International Journal of Sediment Research, 2019, 34(5): 432-443. DOI:10.1016/j.ijsrc.2018.12.006
doi: 10.1016/j.ijsrc.2018.12.006
38 汪品先, 闵秋宝, 卞云华, 等. 我国东部第四纪海侵地层的初步研究[J]. 地质学报, 1981(1): 1-13.
WANG P X, MIN Q B, BIAN Y H, et al. Strata of quaternary transgressions in east China: A preliminary study[J]. Acta Geologica Sinica, 1981(1): 1-13.
39 陈红瑾, 徐兆凯, 蔡明江, 等. 30 ka以来东阿拉伯海U1456站位黏土粒级碎屑沉积物来源及其古环境意义[J]. 地球科学, 2019, 44(8): 2803-2817. DOI:10. 3799/dqkx.2018.185
CHEN H J, XU Z K, CAI M J, et al. Provenance of clay-sized detrital sediments and its paleoenvironmental implications at site U1456 in the Eastern Arabian Sea since 30 ka[J]. Earth Science, 2019, 44(8): 2803-2817. DOI:10.3799/dqkx.2018.185
doi: 10.3799/dqkx.2018.185
40 LI T G, LIU Z X, HALL M A, et al. Heinrich event imprints in the Okinawa Trough: Evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. DOI:10.1016/S0031-0182(01)00332-7
doi: 10.1016/S0031-0182(01)00332-7
41 林清龙, 林楠, 马宏杰. 杭州湾南岸慈溪地区晚第四纪沉积与古环境演化[J]. 科学技术与工程, 2017, 17(9): 1-8. DOI:10.3969/j.issn.16711815.2017. 09.001
LIN Q L, LIN N, MA H J. Late quaternary sediments and paleoenvironmental evolution in Cixi,Hangzhou Bay south coast area[J]. Science Technology and Engineering, 2017, 17(9): 1-8. DOI:10.3969/j.issn.1671-1815.2017.09.001
doi: 10.3969/j.issn.1671-1815.2017.09.001
[1] 邱忠荣, 马维林, 张霄宇, 董彦辉, 章伟艳, 杨克红. 西北太平洋表层沉积物地球化学特征及其物源指示意义[J]. 浙江大学学报(理学版), 2020, 47(3): 345-354.
[2] 周 子 康 ;刘 为 纶. 杭州湾南岸全新世温暖期气候的基本特征[J]. 浙江大学学报(理学版), 1996, 23(1): 80-86.