Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (3): 329-335    DOI: 10.3785/j.issn.1008-9497.2022.03.010
数学与计算机科学     
基于WENO重构保号的四阶熵稳定格式
郑素佩(),赵青宇(),封建湖
长安大学 理学院,陕西 西安 710064
The fourth order entropy stable scheme based on sign-preserving WENO reconstruction
Supei ZHENG(),Qingyu ZHAO(),Jianhu FENG
School of Science,Chang'an University,Xi'an 710064,China
 全文: PDF(1211 KB)   HTML( 1 )
摘要:

为提高一维双曲守恒律方程数值求解格式的分辨率和精度,提出了一种基于加权本质非振荡(weighted essentially non-oscillatory,WENO)重构保号的四阶熵稳定格式。该格式主要包含高阶熵守恒通量和数值耗散项,通过在单元交界面处用拉格朗日多项式对熵变量进行有限差分WENO重构,证明了重构前后跳跃值满足保号性,论证了所构造格式的熵稳定性。在数值算例中,将空间半离散格式与四阶Runge-Kutta格式相结合,并将该格式与熵稳定格式进行了比较,结果表明,该格式具有四阶精度、较高的分辨率和鲁棒性,且不产生非物理振荡。

关键词: 双曲守恒律方程WENO重构保号性四阶熵稳定    
Abstract:

In order to effectively improve the resolution and accuracy of the numerical scheme for solving one dimensional hyperbolic conservation laws, a fourth order entropy stable scheme based on sign-preserving WENO reconstruction is proposed. The scheme mainly contains high order entropy conservation flux and numerical dissipation term, where the dissipation operator is reconstructed by finite difference WENO using Lagrange polynomials on the entropy variable at the cell interface, which proves that the jump on the reconstructed values and the original values satisfy sign-preserving property at the discontinuous position, and the newly constructed scheme is entropy stable. Finally, in several numerical experiments, we combined the spatial semi-discrete scheme with the fourth-order Runge-Kutta method to advance in the time direction, and compared the constructed scheme with the entropy stable scheme, the results demonstrate that the scheme has fourth order accuracy, high resolution and the robust numerical performance, and there is no physical oscillation.

Key words: hyperbolic conservation laws    WENO reconstruction    sign-preserving    fourth order    entropy stable
收稿日期: 2021-06-21 出版日期: 2022-05-24
CLC:  O 241.82  
基金资助: 国家自然科学基金资助项目(11971075);陕西省自然科学基金青年项目(2020JQ-338)
通讯作者: 赵青宇     E-mail: zsp2008@chd.edu.cn;1214742342@qq.com
作者简介: 郑素佩(1978—),ORCID: https//orcid.org/0000-0003-2502-6998,女,博士,副教授,主要从事科学与工程中的高性能计算技术研究,E-mail:zsp2008@chd.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑素佩
赵青宇
封建湖

引用本文:

郑素佩,赵青宇,封建湖. 基于WENO重构保号的四阶熵稳定格式[J]. 浙江大学学报(理学版), 2022, 49(3): 329-335.

Supei ZHENG,Qingyu ZHAO,Jianhu FENG. The fourth order entropy stable scheme based on sign-preserving WENO reconstruction. Journal of Zhejiang University (Science Edition), 2022, 49(3): 329-335.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.03.010        https://www.zjujournals.com/sci/CN/Y2022/V49/I3/329

网格数L1误差收敛阶L误差收敛阶
408.60×10-56.90×10-5
805.15×10-64.064.07×10-64.08
1603.20×10-74.012.51×10-74.02
3202.00×10-84.001.57×10-84.00
6401.25×10-94.009.79×10-104.00
表1  算例1的数值结果
图1  算例2的数值结果
图2  算例3的数值结果
图3  算例4的数值结果
图4  算例5的数值结果
图5  算例6的数值结果
图6  算例7的数值结果
1 张海军.求解浅水波方程的熵稳定格式研究[D].西安:长安大学,2018.
ZHANG H J. The Research of Entropy Stable Schemes for Shallow Water Equations[D]. Xi'an: Chang'an University,2018.
2 王令,郑素佩. 基于移动网格的熵稳定格式求解浅水波方程[J]. 水动力学研究与进展(A辑),2020,35(2):188-193. DOI:10.16076/j.cnki.cjhd.2020. 02.006
WANG L, ZHENG S P. Solving shallow water wave equation based on moving grid entropy stable scheme[J]. Chinese Journal of Hydrodynamics, 2020,35(2): 189-193. DOI:10.16076/j.cnki.cjhd.2020.02.006
doi: 10.16076/j.cnki.cjhd.2020.02.006
3 贾豆,郑素佩.求解二维Euler方程的旋转通量混合格式[J].应用数学和力学,2021,42(2):170-179.DOI:10.21656/1000-0887.410196
JIA D, ZHENG S P. A hybrid schemes of rotational flux for solving 2D Euler equations [J]. Applied Mathematics and Mechanics, 2021,42(2):170-179. DOI:10.21656/1000-0887.410196
doi: 10.21656/1000-0887.410196
4 TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws I[J]. Mathematics of Computation, 1987,49(179):91-103. DOI:10.2307/2008251
doi: 10.2307/2008251
5 ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks[J]. Journal of Computational Physics, 2009,228(15):5410-5436. DOI:10.1016/j.jcp. 2009.04.021
doi: 10.1016/j.jcp. 2009.04.021
6 LEFLOCH P G, MERCIER J M, ROHDE C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM Journal on Numerical Analysis, 2002, 40(5): 1968-1992. DOI:10.1137/s003614290240069x
doi: 10.1137/s003614290240069x
7 FJORDHOLM U S, MISHRA S, TADMOR E. Arbitrarily high-order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws[J]. SIAM Journal on Numerical Analysis, 2012,50(2):544-573. DOI:10.1137/110836961
doi: 10.1137/110836961
8 HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes III[C]// Upwind and High-Resolution Schemes. Berlin / Heidelberg: Springer, 1987: 218-290. doi:10.1007/978-3-642-60543-7_12
doi: 10.1007/978-3-642-60543-7_12
9 LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. DOI:10.1006/jcph.1994.1187
doi: 10.1006/jcph.1994.1187
10 冯娟娟. 高分辨率数值格式在交通流方程的应用[D]. 西安:长安大学,2019. doi:10.16783/j.cnki.nwnuz.2019.02.007
FENG J J. High-Resolution Scheme in Application of Traffic Flow Equations[D]. Xi'an: Chang'an University,2019. doi:10.16783/j.cnki.nwnuz.2019.02.007
doi: 10.16783/j.cnki.nwnuz.2019.02.007
11 郑素佩,王苗苗,王令.基于WENO-Z重构的Osher-Solomon格式求解浅水波方程[J].水动力学研究与进展(A辑),2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
ZHENG S P, WANG M M, WANG L. Reconstructing Osher-Solomon scheme based on WENO-Z for shallow water equation[J]. Chinese Journal of Hydrodynamics,2020,35(1):90-99. DOI:10.16076/j.cnki.cjhd.2020.01.014
doi: 10.16076/j.cnki.cjhd.2020.01.014
12 SHU C W. High order weighted essentially non-oscillatory schemes for convection dominated problems[J]. SIAM Review, 2009, 51(1): 82-126. DOI:10.1137/070679065
doi: 10.1137/070679065
13 FJORDHOLM U S, RAY D. A sign preserving WENO reconstruction method[J]. Journal of Scientific Computing, 2016, 68(1): 42-63. doi:10.1007/s10915-015-0128-y
doi: 10.1007/s10915-015-0128-y
14 BISWAS B, DUBEY R K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions[J]. Advances in Computational Mathematics, 2018, 44(4): 1153-1181. DOI:10. 1007/s10444-017-9576-2
doi: 10. 1007/s10444-017-9576-2
15 HARTEN A. On a class of high resolution total-variation-stable finite-difference schemes[J]. SIAM Journal on Numerical Analysis, 1984, 21(1): 1-23. DOI:10.2307/2157043
doi: 10.2307/2157043
16 LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 2005, 7(1):198-232. DOI:10.1007/0-387-28148-7_16
doi: 10.1007/0-387-28148-7_16
17 LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves [C]//11th of SIAM Regional Conferences Lectures in Applied Mathematics. Philadelphia: Society for Industrial and Applied Mathematics, 1973:1-48. doi:10.1137/1.9781611970562.ch1
doi: 10.1137/1.9781611970562.ch1
18 DAFERMOS C M. Hyperbolic systems of conservation laws [C]// Systems of Nonlinear Partial Differential Equations. Berlin/Dordrecht: Springer, 1983: 25-70. DOI:10.1007/978-94-009-7189-9_2
doi: 10.1007/978-94-009-7189-9_2
19 JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. DOI:10.1006/jcph.1996.0130
doi: 10.1006/jcph.1996.0130
20 李彬彬. 基于移动网格的高分辨率算法[D].西安:长安大学,2019.
LI B B. High-Resolution Algorithms Based on Adaptive Moving Mesh[D]. Xi'an: Chang'an University,2019.
[1] 郑素佩,靳放,封建湖,林云云. 双曲型方程激波捕捉的物理信息神经网络(PINN)算法[J]. 浙江大学学报(理学版), 2023, 50(1): 56-62.
[2] 陈雪春, 李永祥. 一类完全四阶边值问题解的存在性[J]. 浙江大学学报(理学版), 2020, 47(2): 155-158.
[3] 沈文国. 非线性项在零点非渐进增长的四阶边值问题单侧全局分歧[J]. 浙江大学学报(理学版), 2016, 43(5): 525-531.