Please wait a minute...
浙江大学学报(理学版)  2021, Vol. 48 Issue (2): 151-158    DOI: 10.3785/j.issn.1008-9497.2021.02.003
图形计算     
基于拉伸特征的B-Rep→CSG转换算法及其应用
罗月童1, 韩承村1, 杜华2, 严伊蔓3
1.合肥工业大学 计算机与信息学院,安徽 合肥 230601
2.中国科学院 等离子体物理研究所, 安徽 合肥 230031
3.国家电投集团科学技术研究院有限公司,北京 100033
Stretch feature based B-Rep→CSG conversion algorithm and its application
LUO Yuetong1, HAN Chengcun1, DU Hua2, YAN Yiman3
1.School of Computer Science and Information Technology,Hefei University of Technology,Hefei 230601,China
2.Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China
3.State Power Investment Corporation Research Institute,Beijing 100033,China
 全文: PDF(3447 KB)   HTML  
摘要: 边界表示(boundary representation,B-Rep)法和构造实体几何(construction solid geometry,CSG)法是目前应用最广泛的两种实体表示法,B-Rep→CSG转换也备受关注。B-Rep→CSG转换算法为一种半空间分割法,完全依赖三维造型引擎中的布尔运算,计算量大且不稳定。实际应用中已有大量具有拉伸特征的B-Rep模型:可将整个模型或模型的一部分看作由二维图形沿一定方向拉伸而成。通过将三维模型的B-Rep→CSG转换问题变为二维图形的B-Rep→CSG转换问题,从而避免对布尔运算的依赖,为此,提出基于拉伸特征的B-Rep→CSG转换算法。首先,得到拉伸边具有相互平行性、首尾相连性、方向相反性、唯一连接性4个拉伸特征,然后,基于这些特征提出基于平行边连接图的拉伸特征识别算法,最后,结合拉伸特征识别算法、基于环收缩的模型分割算法和基于顶点可见的多边形分割算法,提出具有拉伸特征的三维模型的B-Rep→CSG转换整体解决方案。将本文算法集成至自主研发的粒子输运可视建模(COSINE visual modelling of particle transport,cosVMPT)软件,并基于cosVMPT对3个专门构造的例题和1个实际应用实例进行了测试,测试结果证明了本文算法的有效性和优越性。
关键词: B-Rep→CSG转换拉伸特征平行边连接图形多边形分割    
Abstract: Boundary representation (B-Rep) and construction solid geometry (CSG) are the two most widely used solid representation schemes,and B-Rep→CSG conversion has always been a theoretical problem of great concern.At present,the most commonly used B-Rep→CSG conversion is half-space decomposing algorithm,which vitally dependents on the underlying 3D modeling engine's Boolean operation,and is limited due to intensive computation and instability.There are many stretch models in B-Rep model,which are formed by sweeping 2D drawing along a certain direction,and their B-Rep→CSG conversion can be transformed into B-Rep→CSG conversion of 2D model.In this paper,a Parallel Edge Adjacent Graph based stretch feature recognition algorithm is presented.The overall scheme of B-Rep →CSG transformation for 3D models with stretch features consists of stretch feature recognition,cutting loop shrinking based model decomposition and polygon vertex visibility based polygon decomposition.The proposed method is integrated into cosVMPT (COSINE visual modeling of particle transport),which is a visual modeling tool for particle transport software package.Three synthesis examples and a practical application example are used for testing.The testing results demonstrate the effectiveness and superiority of the proposed method.
Key words: B-Rep→CSG conversion    stretch feature    parallel edge adjacency graph    polygon decomposing
收稿日期: 2020-09-23 出版日期: 2021-03-18
CLC:  TP391.41  
基金资助: 国家重点研发计划项目(2017YFB1402200);安徽省科技攻关计划项目(1604d0802009);国家自然科学基金资助项目(61602146).
作者简介: 罗月童(1978—),ORCID:http://orcid.org/0000-0002-4684-6350,男,博士,教授,主要从事计算机辅助设计、可视分析研究,E-mail:ytluo@hfut.edu.c;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗月童
韩承村
杜华
严伊蔓

引用本文:

罗月童, 韩承村, 杜华, 严伊蔓. 基于拉伸特征的B-Rep→CSG转换算法及其应用[J]. 浙江大学学报(理学版), 2021, 48(2): 151-158.

LUO Yuetong, HAN Chengcun, DU Hua, YAN Yiman. Stretch feature based B-Rep→CSG conversion algorithm and its application. Journal of Zhejiang University (Science Edition), 2021, 48(2): 151-158.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2021.02.003        https://www.zjujournals.com/sci/CN/Y2021/V48/I2/151

1 BRIESMEISTER J F.MCNP-A General Mont- Carlo N-Particle Transport Code,Version 4C LA-13709-M[R].Los Alamos:Los Alamos National Aboratory,2000.
2 秦瑶,余慧,全国萍,等.基于VERA基准题的cosRMC程序验证[J].强激光与粒子束,2017,29(12):161-168. DOI:10.11884/HPLPB201729. 170221 QIN Y,YU H,QUAN G P,et al.Verification of Monte Carlo code cosRMC based on VERA core physics benchmark[J].High Power Laser and Particle Beams,2017,29(12):161-168. DOI:10.11884/HPLPB201729.170221
3 DU H,LUO Y T,HAN C,et al.Development of an assistant program for CAD-to-cosRMC modeling[J].Fusion Engineering and Design,2020,157:111662. DOI:10.1016/j.fusengdes.2020.111662
4 熊健,王国忠,王电喜,等. MCAM在ITER装置TRIPOLI三维中子学建模中的应用[J].核科学与工程,2011,31(2):162-168. DOI:10.1097/RLU.0b013e3181f49ac7 XIONG J,WANG G Z,WANG D X,et al.Applications of MCAM for ITER TRIPOLI 3D neutronics modeling[J].Chinese Journal of Nuclear Science and Engineering,2011,31(2):162-168. DOI:10.1097/RLU.0b013e3181f49ac7
5 MORO F,FISCHER U,LU L,et al.The McCAD code for the automatic generation of MCNP 3D models:Applications in fusion neutronics[J].IEEE Transactions on Plasma Science,2014,42(4):1036-1041. DOI:10.1109/TPS.2014.2308957
6 BUCHELEA S F,CRAWFORDB R.Three-dimensional half-space constructive solid geometry tree construction from implicit boundary representations[J].Computer-Aided Design,2004,36(12):1063-1073.
7 SHAPIRO V,VOSSLER D L.Separation for boundary to CSG conversion[J].ACM Transactions on Graphics,1993,12(1):35-55. DOI:10.1145/169728.169723
8 LU Y,GADH R,TAUTGES T J.Feature based hex meshing methodology:Feature recognition and volume decomposition[J].Computer-Aided Design,2001,33(3):221-232. DOI:10.1016/S0010-4485(00)00122-6
13 Spatial-Corp.3D-ACIS-Modeler[EB/OL].[2009-05-15].https://www.spatial.com/products/3d-acis-modeling.
14 Open-Cascade.Opencascade[EB/OL].[2020-12-01].https://www.opencascade.com.
10 WOO T C.Feature Extraction by Volume Decomposition[C]//Proceedings of the Conference on CAD/CAM. Cambridge:MIT Press,1982:39-45.
11 HIROSHI S.Volume decomposition and feature recognition,part I:Polyhedral objects[J].Computer-Aided Design,1995,27(11):833-843. DOI:10.1016/0010-4485(95)00007-0
9 马露杰,黄正东.基于面壳封闭的B-Rep模型分解方法[J].计算机学报,2009,32(6):1183-1195. DOI:10.3724/SP.J.1016.2009.01183 MA L J,HUANG Z D. A B-Rep model decomposition approach based on face shell shrinking[J].Chinese Journal of Computers,2009,32(6):1183-1195. DOI:10.3724/SP.J.1016.2009.01183
12 HIROSHI S,PARAG D.Volume decomposition and feature recognition,part II:Curve objects[J].Computer-Aided Design,1996,28(6/7):519-537. DOI:10.1016/0010-4485(95)00067-4
15 HOLZMANN G J,PELED D,YANNAKAKIS M.On nested depth first search[J].DIMACS Series in Discrete Mathematics and Theoretical Computer Science,1997,32:23-31. 10.1090/dimacs/032/03
16 DU H,LUO Y T,HAN C,et al.Development of an assistant program for CAD-to-cosRMC modelling[J].Fusion Engineering and Design,2020,157:111662. DOI:10.1016/j.fusengdes.2020.111662
17 罗月童,樊晓菁,俞盛朋,等.基于面壳封闭的B-Rep至CSG转换算法[J].计算机辅助设计与图形学学报,2014,26(10):1673-1680. LUO Y T,FAN X J,YU S P,et al. Face shell shrinking based B-Rep to CSG conversion algorithm[J]. Journal of Computer Aided Design Computer Graphics,2014,26(10):1673-1680.
18 SHAPIRO V,VOSSLER D L.Efficient CSG representations of two-dimensional solids[J].Journal of Mechanical Design,1991,113(3):292-305. DOI:10.1115/1.2912782
19 金文华,饶上荣,唐卫清,等.基于顶点可见性的凹多边形快速凸分解算法[J].计算机研究与发展,1999,36(12):1455-1460. DOI:10.1007/BF02946505 JIN W H,RAO S R,TANG W Q,et al.A fast polygon convex decomposition algorithm based on point visibility[J].Journal of Computer Research and Development,1999,36(12):1455-1460. DOI:10.1007/BF02946505
[1] 陈佳舟, 王宇航, MohammedAmal Ahmed Hasan, 黄可妤, 卢周扬, 彭群生. 基于图像的二维剪纸自动生成方法[J]. 浙江大学学报(理学版), 2020, 47(3): 274-283.
[2] 卢家品, 罗月童, 黄兆嵩, 张延孔, 陈为. 基于排名学习和多源信息的地图匹配方法[J]. 浙江大学学报(理学版), 2020, 47(1): 27-35.
[3] 刘一璟, 张旭斌, 张建伟, 周哲磊, 冯元力, 陈为. DenseNet-centercrop: 一个用于肺结节分类的卷积网络[J]. 浙江大学学报(理学版), 2020, 47(1): 20-26.
[4] 李丽, 高若婉, 梅树立, 赵海英. 基于Shannon-Cosine小波精细积分法的壁画降噪修复方法[J]. 浙江大学学报(理学版), 2019, 46(3): 279-287.
[5] 傅红普, 邹北骥. 一种方向梯度直方图的降维方法[J]. 浙江大学学报(理学版), 2017, 44(2): 134-138.
[6] 张莉, 赵林, 檀结庆. 带互异权值的渐进迭代逼近算法及其应用[J]. 浙江大学学报(理学版), 2017, 44(1): 22-27.
[7] 桂彦, 王培玉, 李峰, 刘杨. 基于GPU加速的几何纹理合成方法[J]. 浙江大学学报(理学版), 2016, 43(6): 638-646.
[8] 刘玉杰, 庞芸萍, 李宗民, 李华. 融合抽象层级变换和卷积神经网络的手绘图像检索方法[J]. 浙江大学学报(理学版), 2016, 43(6): 657-663.