Please wait a minute...
浙江大学学报(理学版)  2024, Vol. 51 Issue (3): 347-354    DOI: 10.3785/j.issn.1008-9497.2024.03.013
化学     
Pt/MCF催化剂上Ti的添加对典型VOCs完全氧化反应的影响
王超1,2(),章圣伟1,2,毛建新1,2(),周仁贤1,2
1.浙江大学 化学系,浙江 杭州 310028
2.浙江省应用化学重点实验室,浙江 杭州 310028
Effect of Ti addition on complete oxidation of several VOCs over Pt/MCF catalyst
Chao WANG1,2(),Shengwei ZHANG1,2,Jianxin MAO1,2(),Renxian ZHOU1,2
1.Department of Chemistry,Zhejiang University,Hangzhou 310028,China
2.Key Lab of Applied Chemistry of Zhejiang Province,Hangzhou 310028,China
 全文: PDF(3362 KB)   HTML( 0 )
摘要:

在介孔二氧化硅泡沫(mesocellular silica foam,MCF)载体中用2种不同的方式添加钛(Ti)元素,分别得到PtxTi/MCF和Pt/yTi-MCF系列催化剂,研究了催化剂对于苯、正己烷和乙酸乙酯完全氧化反应的催化活性,详细考察了催化剂的制备方法,以及Ti的添加量、焙烧温度对催化活性的影响。另外,用氮气等温吸脱附曲线、拉曼(Raman)光谱、小角和广角X射线衍射(XRD)分析等,表征部分载体及催化剂的结构及其物理化学性质。结果表明,将乙酰丙酮铂和乙酰丙酮钛混合,经浸渍、焙烧制备的Pt8Ti/MCF催化剂,对苯、正己烷,尤其是乙酸乙酯的完全氧化反应具有较好的催化活性和稳定性,且制备方法简单,有较好的应用前景。

关键词: TiO2介孔二氧化硅泡沫纳米Pt催化完全氧化挥发性有机物    
Abstract:

The catalysts PtxTi/MCF and Pt/yTi-MCF were obtained by adding Ti element to mesocellular silica foam (MCF) support in two different ways. The catalytic activities of these catalysts for the complete oxidation of benzene, n-hexane and ethyl acetate were studied. The effects of different catalyst preparation methods, Ti addition amount and calcination temperature were investigated in detail. In addition, the structure and physicochemical properties of some of the support and catalyst were characterized by nitrogen isothermal adsorption-desorption, Raman spectrum analysis, small and wide angle XRD. The results show that, Pt8Ti/MCF has good catalytic activity and stability for the complete oxidation of benzene, n-hexane, and especially ethyl acetate. It was prepared simply by impregnating the mixture solution of platinum acetylacetone and titanium acetylacetone and then calcination, which exhibits a good application prospect in future.

Key words: TiO2    mesocellular silica foam (MCF)    nano Pt    catalytic incineration    VOCs
收稿日期: 2023-02-27 出版日期: 2024-05-07
CLC:  O 643.32  
基金资助: 国家重点研发计划项目(2016YFC0204300)
通讯作者: 毛建新     E-mail: 22037050@zju.edu.cn;jxmao@zju.edu.cn
作者简介: 王超(1998—),ORCID:https://orcid.org/0009-0008-6470-8370,男,硕士研究生,主要从事环境催化研究,E-mail: 22037050@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王超
章圣伟
毛建新
周仁贤

引用本文:

王超,章圣伟,毛建新,周仁贤. Pt/MCF催化剂上Ti的添加对典型VOCs完全氧化反应的影响[J]. 浙江大学学报(理学版), 2024, 51(3): 347-354.

Chao WANG,Shengwei ZHANG,Jianxin MAO,Renxian ZHOU. Effect of Ti addition on complete oxidation of several VOCs over Pt/MCF catalyst. Journal of Zhejiang University (Science Edition), 2024, 51(3): 347-354.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2024.03.013        https://www.zjujournals.com/sci/CN/Y2024/V51/I3/347

图1  催化剂的氮气等温吸脱附曲线及其孔径分布
催化剂TiO2的质量分数/%SBET/(m2·g-1dwin/nmdcell/nmD/%d/nm
Pt/MCF050812.528.7701.6
Pt2.5Ti/MCF2.541818.028.4572.0
Pt8Ti/MCF8.038216.530.7572.0
Pt12Ti/MCF12.040218.028.6631.8
Pt/2Ti-MCF0.1*4539.828.7363.1
Pt/4Ti-MCF2.1*43712.628.6323.5
Pt/8Ti-MCF7.0*39712.628.8741.5
表1  PtxTi/MCF和Pt/yTi-MCF系列催化剂的物理化学性质
图2  PtxTi/MCF催化剂的XRD图谱
图3  Pt8Ti/MCF、TiO2和yTi-MCF的Raman光谱
图4  在不同催化剂作用下苯、正己烷和乙酸乙酯的转化率与反应温度的关系
图5  在PtxTi/MCF和Pt/TiO2催化作用下乙酸乙酯的转化率与反应温度的关系
图6  在Pt/yTiMCF催化作用下正己烷的转化率与反应温度的关系
图7  在Pt/yTiMCF催化作用下正己烷的转化率、反应温度与反应时间的关系
图8  经不同焙烧温度制得的Pt8Ti/MCF催化剂对乙酸乙酯完全氧化反应活性的影响
图9  经不同焙烧温度制得的Pt8Ti/MCF催化剂对乙酸乙酯完全氧化反应稳定性的影响
图10  经不同焙烧温度制得的Pt8Ti/MCF催化剂的Raman光谱
1 ZHANG Z X, JIANG Z, SHANGGUAN W.Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278. DOI:10. 1016/J.CATTOD.2015.10.040
doi: 10. 1016/J.CATTOD.2015.10.040
2 KAMAL M S, RAZZAK S A, HOSSAIN M M.Catalytic oxidation of volatile organic compounds (VOCs) : A review[J]. Atmospheric Environment, 2016, 140: 117-134. DOI:10.1016/j.atmosenv. 2016.05.03
doi: 10.1016/j.atmosenv. 2016.05.03
3 LIOTTA L F.Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B: Environmental, 2010, 100(3/4): 403-412. DOI:10.1016/j.apcatb.2010.08.023
doi: 10.1016/j.apcatb.2010.08.023
4 HUANG H, LEUNG D Y C.Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature[J]. Journal of Catalysis, 2011, 280(1): 60-67. DOI:10.1016/j.jcat.2011.03.003
doi: 10.1016/j.jcat.2011.03.003
5 HOU Z Q, PEI W B, ZHANG X, et al.Rare earth oxides and their supported noble metals in application of environmental catalysis[J]. Journal of Rare Earths, 2020, 38(8): 819-839. DOI:10.1016/j.jre. 2020.01.011
doi: 10.1016/j.jre. 2020.01.011
6 ZHANG L, PENG Y X, ZHANG J, et al.Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J]. Chinese Journal of Catalysis, 2016, 37(6): 800-809. DOI:10.1016/S1872-2067(15)61073-7
doi: 10.1016/S1872-2067(15)61073-7
7 SCIRÈ S, MINICÒ S, CRISAFULLI C. Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2003, 45(2): 117-125. DOI:10. 1016/S0926-3373(03)00122-X
doi: 10. 1016/S0926-3373(03)00122-X
8 ZHU J J, WANG T, XU X L, et al.Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis[J]. Applied Catalysis B: Environmental, 2013, 130: 197-217. DOI:10.1016/j.apcatb.2012.11.005
doi: 10.1016/j.apcatb.2012.11.005
9 TAGUCHI A, SCHÜTH F.Ordered mesoporous materials in catalysis[J]. Microporous and Mesoporous Materials, 2005, 77(1): 1-45. DOI:10.1016/j.micromeso.2004.06.030
doi: 10.1016/j.micromeso.2004.06.030
10 ZUO S F, WANG X Q, YANG P, et al.Preparation and high performance of rare earth modified Pt/MCM-41 for benzene catalytic combustion[J]. Catalysis Communications, 2017, 94: 52-55. DOI:10.1016/j.catcom.2017.02.017
doi: 10.1016/j.catcom.2017.02.017
11 MAO J X, YUAN Z Q, YANG H S, et al. Effects of Sm addition on reactivity and thermal stability of Pt/SBA-15 for catalytic complete oxidation of benzene[J]. CIESC Journal, 2020, 71(1): 306-313.
12 CAO Y D, RAN R, CHEN Y S, et al.Nanostructured platinum in ordered mesoporous silica as novel efficient catalyst for propane total oxidation[J]. RSC Advances, 2016, 6(36): 30170-30175. DOI:10.1039/C5RA27303J
doi: 10.1039/C5RA27303J
13 TANG W X, WU X F, CHEN Y F.Catalytic removal of gaseous benzene over Pt/SBA-15 catalyst: The effect of the preparation method[J]. Reaction Kinetics Mechanisms and Catalysis, 2015, 114(2): 711-723. DOI:10.1007/s11144-014-0817-9
doi: 10.1007/s11144-014-0817-9
14 WANG X G, LANDAU M V, ROTTER H, et al.TiO2 and ZrO2 crystals in SBA-15 silica: Performance of Pt/TiO2(ZrO2)/SBA-15 catalysts in ethyl acetate combustion[J]. Journal of Catalysis, 2004, 222(2): 565-571. DOI:10.1016/j.jcat.2003. 12.003
doi: 10.1016/j.jcat.2003. 12.003
15 ZHANG X D, WANG Y, YANG Y Q, et al.Recent progress in the removal of volatile organic compounds by mesoporous silica materials and supported catalysts[J]. Acta Physico-Chimica Sinica, 2015, 31(9): 1633-1646. DOI:10.3866/PKU.WHXB201507281
doi: 10.3866/PKU.WHXB201507281
16 SCHMIDT-WINKEL P, LUKENS W W, ZHAO D Y, et al.Mesocellular siliceous foams with uniformly sized cells and windows[J]. Journal of the American Chemical Society, 1999, 121(1): 254-255. DOI:10.1021/JA983218I
doi: 10.1021/JA983218I
17 SCHMIDT-WINKEL P, LUKENS W W, YANG P D, et al.Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores[J]. Chemistry of Materials, 2000, 12(3): 686-696. DOI:10.1021/cm991097v
doi: 10.1021/cm991097v
18 CHRZANOWSKA A, DERYLO-MARCZEWSKA A, WASILEWSKA M.Mesocellular silica foams (MCFs) with tunable pore size as a support for lysozyme immobilization: Adsorption equilibrium and kinetics, biocomposite properties[J]. International Journal of Molecular Sciences, 2020, 21(15): 5479. DOI:10.3390/ijms21155479
doi: 10.3390/ijms21155479
19 THANANUKUL N, PHONGPHUT A, PRICHANONT S, et al.A comparative study on mesocellular foam silica with different template removal methods and their effects on enzyme immobilization[J]. Journal of Porous Materials, 2019, 26(4): 1059-1068. DOI:10.1007/s10934-018-0705-1
doi: 10.1007/s10934-018-0705-1
20 HAO Z K, LI S Y, SUN J R, et al.Efficient visible-light-driven depolymerization of oxidized lignin to aromatics catalyzed by an iridium complex immobilized on mesocellular silica foams[J]. Applied Catalysis B: Environmental, 2018, 237: 366-372. DOI:10.1016/j.apcatb.2018.05.072
doi: 10.1016/j.apcatb.2018.05.072
21 XING M Y, ZHANG J L, QIU B C, et al.A brown mesoporous TiO2- x /MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution[J]. Small (Weinheim an der Bergstrasse, Germany), 2015, 11(16): 1920-1929. DOI:10.1002/smll.201403056
doi: 10.1002/smll.201403056
22 HERMIDA L, AGUSTIAN J, ABDULLAH A Z, et al.Review of large-pore mesostructured cellular foam (MCF) silica and its applications[J]. Open Chemistry, 2019, 17(1): 1000-1016. DOI:10.1515/chem-2019-0107
doi: 10.1515/chem-2019-0107
23 MASOUD N, DONOEVA B, DE JONGH P E.Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid[J]. Applied Catalysis A: General, 2018, 561: 150-157. DOI:10.1016/j.apcata. 2018.05.027
doi: 10.1016/j.apcata. 2018.05.027
24 SU Y, LIU Y M, WANG L C, et al.Tungsten-containing MCF silica as active and recyclable catalysts for liquid-phase oxidation of 1, 3-butanediol to 4-hydroxy-2-butanone[J]. Applied Catalysis A: General, 2006, 315: 91-100. DOI:10.1016/j.apcata. 2006.09.002
doi: 10.1016/j.apcata. 2006.09.002
25 YANG X L, YIN A Y, DAI W L, et al.Synthesis of highly efficient WO3-doped MCF catalyst and its application in the selective oxidation of cyclopentene to glutaraldehyde[J]. Acta Physico-Chimica Sinica, 2011, 27(1): 177-185. DOI:10.3866/PKU.WHXB20110105
doi: 10.3866/PKU.WHXB20110105
26 WANG C, TIAN C C, GUO Y L, et al.Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions[J]. Journal of Hazardous Materials, 2018, 342: 290-296. DOI:10.1016/j.jhazmat.2017. 08.036
doi: 10.1016/j.jhazmat.2017. 08.036
27 MAZINANI B, BEITOLLAHI A, MASROM A K, et al.Synthesis and photocatalytic performance of hollow sphere particles of SiO2-TiO2 composite of mesocellular foam walls[J]. Ceramics International, 2017, 43(15): 11786-11791. DOI:10.1016/j.ceramint.2017.06.017
doi: 10.1016/j.ceramint.2017.06.017
28 HUANG H B, HU P, HUANG H L, et al.Highly dispersed and active supported Pt nanoparticles for gaseous formaldehyde oxidation: Influence of particle size[J]. Chemical Engineering Journal, 2014, 252: 320-326. DOI:10.1016/j.cej.2014.04.108
doi: 10.1016/j.cej.2014.04.108
29 PENG R S, LI S J, SUN X B, et al.Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2018, 220: 462-470. DOI:10.1016/j.apcatb.2017.07.048
doi: 10.1016/j.apcatb.2017.07.048
30 潘晓燕, 马学鸣.纳米TiO2的Raman 光谱研究进展[J]. 材料科学与工程, 2001, 19(4): 138-142. DOI:10.3969/j.issn.1673-2812.2001.04.028
PAN X Y, MA X M.Progress of research on raman spectra of nano-TiO2 [J]. Journal of Materials Science and Engineering, 2001, 19(4): 138-142. DOI:10.3969/j.issn.1673-2812.2001.04.028
doi: 10.3969/j.issn.1673-2812.2001.04.028
No related articles found!