Please wait a minute...
浙江大学学报(理学版)  2024, Vol. 51 Issue (3): 328-335    DOI: 10.3785/j.issn.1008-9497.2024.03.011
数学与计算机科学     
求解具有初始奇异性的二维非线性时间分数阶波动方程的紧差分格式
张光辉()
宿州学院 数学与统计学院,安徽 宿州 234000
A compact difference scheme for two-dimensional nonlinear time-fractional wave equations with initial singularity
Guanghui ZHANG()
School of Mathematics and Statistics,Suzhou College,Suzhou 234000,Anhui Province,China
 全文: PDF(502 KB)   HTML( 0 )
摘要:

基于具有初始奇异性的二维非线性时间分数阶波动方程的等价积分-微分形式,将卷积求积公式与Crank-Nicolson技术相结合,建立了求解该方程的交替方向隐式(alternate directional implicit,ADI)数值格式。理论推导说明,该格式在时间方向上至少具有γ阶精度,在空间方向上具有4阶精度,并用数值算例进行了验证。

关键词: 初始奇异性时间分数阶波动方程    
Abstract:

Based on the equivalent integral-differential form of the equation considered, an alternate directional implicit (ADI) numerical scheme for two-dimensional nonlinear time-fractional wave equations with initial singularity was developed by combining the convolution quadrature formula with the Crank-Nicolson technique. Theoretical derivation shows that the scheme has at least order γ accuracy in time direction and order 4 accuracy in space direction. Finally, a numerical example is demonstrated to verify the conclusion.

Key words: initial singularity    time fractional order    wave equation
收稿日期: 2022-06-17 出版日期: 2024-05-07
CLC:  O 241.82  
基金资助: 安徽省高校自然科学研究重点项目(KJ2021A1101)
作者简介: 张光辉(1980—),ORCID:https://orcid.org/0000-0002-1591-6818,男,硕士,副教授,主要从事分数阶微分方程数值解法研究,E-mail:zgh101044@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张光辉

引用本文:

张光辉. 求解具有初始奇异性的二维非线性时间分数阶波动方程的紧差分格式[J]. 浙江大学学报(理学版), 2024, 51(3): 328-335.

Guanghui ZHANG. A compact difference scheme for two-dimensional nonlinear time-fractional wave equations with initial singularity. Journal of Zhejiang University (Science Edition), 2024, 51(3): 328-335.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2024.03.011        https://www.zjujournals.com/sci/CN/Y2024/V51/I3/328

τ误差时间方向的收敛阶
γ = 1.2γ = 1.4γ = 1.7γ = 1.2γ = 1.4γ = 1.7
1/51.310 0×10-21.169 1×10-21.037 6×10-2
1/102.790 3×10-32.404 0×10-31.208 1×10-32.231 22.281 93.102 4
1/201.397 1×10-31.142 6×10-32.134 5×10-40.998 01.073 12.501 1
1/406.564 0×10-45.200 1×10-47.319 2×10-51.089 81.135 61.544 1
1/802.820 7×10-41.945 9×10-42.268 1×10-51.218 51.418 11.690 2
1/1601.199 5×10-47.268 0×10-56.928 3×10-61.233 61.420 71.710 9
表1  当h=0.001,α=1.5,t=t1=τ时式(12)和式(13)的数值解误差和时间方向的收敛阶
τ误差时间方向的收敛阶
γ = 1.2γ = 1.4γ = 1.7γ = 1.2γ = 1.4γ = 1.7
1/53.780 1×10-23.996 9×10-25.228 6×10-2
1/108.733 1×10-38.809 4×10-31.260 5×10-22.113 92.181 82.052 4
1/202.213 1×10-32.243 8×10-33.125 7×10-31.980 41.973 12.010 9
1/405.370 8×10-45.250 1×10-48.106 2×10-42.042 92.095 61.948 6
1/801.290 9×10-41.296 2×10-42.040 4×10-42.056 82.018 11.990 2
1/1603.230 8×10-53.253 5×10-55.063 1×10-51.998 41.994 22.010 8
表2  当h=0.001,α=1.5,t=tM=Mτ时式(12)和式(13)的数值解误差和时间方向的收敛阶
h误差空间方向的收敛阶
α=1.3α=1.5α= 1.7α=1.3α=1.5α= 1.7
1/52.704 9×10-33.985 4×10-38.228 6×10-3
1/101.654 0×10-42.671 1×10-45.392 0×10-44.031 53.899 23.931 8
1/209.740 1×10-61.578 9×10-53.689 9×10-54.085 94.080 43.869 2
1/406.109 1×10-71.053 9×10-62.289 1×10-63.995 03.905 74.010 7
1/803.871 9×10-86.180 8×10-81.334 1×10-73.980 14.091 84.100 8
表3  当τ=0.001,γ = 1.5,t=1时式(12)和式(13)的数值解误差和空间方向的收敛阶
1 KOELLER R C. Application of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51(2): 229-307. DOI:10.1115/1.3167616
doi: 10.1115/1.3167616
2 JAFARIAN A, MOKHTARPOUR M, BALEANU D. Artificial neural network approach for a class of fractional ordinary differential equation[J]. Neural Computing and Applications, 2017, 28: 765-773. DOI:10.1007/s00521-015-2104-8
doi: 10.1007/s00521-015-2104-8
3 AGARWAL R, BENCHOHRA B, HAMANI S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions[J]. Acta Applicandae Mathematicae, 2010, 109: 973-1033. DOI:10.1007/s10440-008-9356-6
doi: 10.1007/s10440-008-9356-6
4 LYU P, VONG S, WANG Z B. A finite difference method for boundary value problems of a Caputo fractional differential equation[J]. East Asian Journal on Applied Mathematics, 2017, 7(4): 752-766. DOI:10.4208/eajam.181016.300517e
doi: 10.4208/eajam.181016.300517e
5 SCHNEIDER W R, WYSS W. Fractional diffusion and wave equations[J]. Journal of Mathematical Physics, 1989, 30: 134-144. DOI:10.1063/1.528578
doi: 10.1063/1.528578
6 WANG Z, VONG S. Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation[J]. Journal of Computational Physics, 2015, 277: 1-15. DOI:10. 1016/j.jcp.2014.08.012
doi: 10. 1016/j.jcp.2014.08.012
7 LUCHKO Y, MAINARDI F. Some properties of the fundamental solution to the signaling problem for the fractional diffusion-wave equation[J]. Central European Journal of Physics, 2013, 11: 666-675. DOI:10.2478/s11534-013-0247-8
doi: 10.2478/s11534-013-0247-8
8 MAO Z, KARNIADAKIS G E. Fractional Burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous Galerkin methods[J]. Journal of Computational Physics, 2017, 336: 143-163. DOI:10.1016/j.jcp.2017.01.048
doi: 10.1016/j.jcp.2017.01.048
9 刘发旺, 庄平辉, 刘青霞. 分数阶偏微分方程数值方法及其应用[M]. 北京: 科学出版社, 2015. doi:10.1142/9789814667050_0006
LIU F W, ZHUANG P H, LIU Q X. Numerical Methods of Fractional Partial Differential Equations and Their Applications[M]. Beijing: Science Press, 2015. doi:10.1142/9789814667050_0006
doi: 10.1142/9789814667050_0006
10 吴强, 黄建华. 分数阶微积分[M]. 北京: 清华大学出版社, 2016.
WU Q, HUANG J H. Fractional Calculus[M]. Beijing: Tsinghua University Press, 2016.
11 SUN Z Z, WU X N. A fully discrete difference scheme for a diffusion-wave system[J]. Applied Numerical Mathematics, 2006, 56(2): 193-209. DOI:10.1016/j.apnum.2005.03.003
doi: 10.1016/j.apnum.2005.03.003
12 LI C P, ZHAO Z G, CHEN Y Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion[J]. Computers & Mathematics with Applications, 2011, 62(3): 855-875. DOI:10.1016/j.camwa.2011. 02.045
doi: 10.1016/j.camwa.2011. 02.045
13 HUANG J F, TANG Y F, VAZQUEZ L, et al. Two fifinite difference schemes for time fractional diffusion-wave equation[J]. Numerical Algorithms, 2013, 64: 707-720. DOI:10.1007/s11075-012-9689-0
doi: 10.1007/s11075-012-9689-0
14 ZHANG G H, REN M. A compact scheme for two-dimensional nonlinear time fractional wave equations[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2021, 12(5): 1-19. DOI:10. 1142/S1793962321500409
doi: 10. 1142/S1793962321500409
15 HUANG J F, ZHANG J N, ARSHAD S, et al. A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations[J]. Applied Numerical Mathematics, 2021, 159: 159-173. DOI:10.1016/j.apnum.2020. 09.003
doi: 10.1016/j.apnum.2020. 09.003
16 张静娜. 多项时空分数阶偏微分方程的数值算法[D]. 扬州: 扬州大学, 2021. DOI:10.27441/d.cnki.gyzdu. 2021.000383
ZHANG J N. Numerical Methods for Multi-Term Time-Space Fractional Partial Differential Equations[D]. Yangzhou: Yangzhou University, 2021. DOI:10.27441/d.cnki.gyzdu.2021.000383
doi: 10.27441/d.cnki.gyzdu.2021.000383
[1] 汪海航, 蒋红标. 临界半线性波动方程解的有限时间破裂[J]. 浙江大学学报(理学版), 2018, 45(4): 400-404.