Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (3): 351-359    DOI: 10.3785/j.issn.1008-9497.2023.03.013
生命科学     
磷脂酶D的大肠杆菌表达系统及其转酰基催化活性
程青(),谢志鹏()
浙江大学 医学院 药物生物技术研究所,浙江 杭州 310058
The E. coli expression system of phospholipase D and its catalytic activity for transacylation
Qing CHENG(),Zhipeng XIE()
Pharmaceutical Biotechnology Institute,School of Medicine,Zhejiang University,Hangzhou 310058,China
 全文: PDF(1731 KB)   HTML( 6 )
摘要:

链霉菌(Streptomyces)来源的磷脂酶D(phospholipase D,PLD)在食品、保健品、医药等行业的应用潜力巨大。目前用大肠杆菌异源表达PLD的方法较常见,但其具有发酵周期长、分离纯化步骤烦琐、培养成本高等缺点。为此,对比研究了大肠杆菌胞内表达、分泌表达和表面展示3种方式对PLD酶活及其磷脂酰丝氨酸(phosphatidylserine,PS)催化合成效率的影响。采用单因素法获得PLD表达的最佳诱导条件为温度20 ℃、OD600=0.7、IPTG浓度0.3 mmol·L-1。发酵时间曲线表明,在诱导表达8 h时,3种方式的PLD水解酶活均达最高值,分别为0.35,0.23,0.11 U·mL-1。扫描电镜结果表明,大肠杆菌表达PLD后,其细胞结构有一定程度破坏,其中分泌表达菌株的变形塌陷情况最为严重。在水-乙酸乙酯两相体系中,以表面展示菌株全细胞催化磷脂酰胆碱(phosphatidylcholine,PC)方式制备PS的产率最高,可达59.1%,显示了大肠杆菌表面展示表达PLD具有大大降低生物催化转化成本的巨大潜力。

关键词: 链霉菌磷脂酶D(PLD)表面展示磷脂酰丝氨酸    
Abstract:

Phospholipase D (PLD) derived from Streptomyces has great application potential in food, health products, medicine and other industries, and the commonly used heterologous expression host is E. coli. However, there are problems such as long fermentation time, cumbersome separation and purification steps, and high cultivation cost. Therefore, the effects of intracellular expression, secretory expression and surface display of E. coli on PLD enzyme activity and phosphatidylserine (PS) catalytic synthesis efficiency were comparatively studied. A single factor method was used to derive the optimal induction conditions for PLD expression modes, specifically, the bacterial concentration OD600 was 0.7, IPTG concentration was 0.3 mmol·L-1 and the temperature was 20 ℃. The fermentation time curve under optimal conditions showed that the PLD enzyme activity by the above three methods reached the highest value when the expression was induced for 8 h, which were 0.35, 0.23, and 0.11 U·mL-1, respectively. Scanning electron microscopy showed that the structure of E. coli cells expressing PLD has been damaged to a certain extent. Among them, the deformation and collapse of the cell structure of the secretory expression strain is the most serious. In the water-ethyl acetate biphase catalyzed phosphatidylcholine (Phosphatidylcholine, PC) system, the PLD surface display strain in the form of a whole cell obtained the highest PS molar conversion rate of 59.1%, compared with the intracellular expression strain and secretion expression strain in the form of sonicated crude enzyme solution, showing that the expression of the E. coli surface display system PLD has great potential for whole-cell catalytic synthesis of PS with reducing production costs.

Key words: Streptomyces    phospholipase D (PLD)    surface display    phosphatidylserine
收稿日期: 2021-01-13 出版日期: 2023-05-19
CLC:  Q 7  
通讯作者: 谢志鹏     E-mail: 21819090@zju.edu.cn;xzp@zju.edu.cn
作者简介: 程青(1995—),ORCID: https://orcid.org/0000-0002-6805-9178,女,硕士研究生,主要从事生物催化与转化研究,E-mail:21819090@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程青
谢志鹏

引用本文:

程青,谢志鹏. 磷脂酶D的大肠杆菌表达系统及其转酰基催化活性[J]. 浙江大学学报(理学版), 2023, 50(3): 351-359.

Qing CHENG,Zhipeng XIE. The E. coli expression system of phospholipase D and its catalytic activity for transacylation. Journal of Zhejiang University (Science Edition), 2023, 50(3): 351-359.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.03.013        https://www.zjujournals.com/sci/CN/Y2023/V50/I3/351

菌株特点PLD表达方式名称
pET28a(+)-PLD/BL21(DE3)pET28a(+)携带pld基因胞内表达BL-PLD
pET22b(+)-PLDp/BL21(DE3)pET 22b(+)携带pld基因、PelB信号肽分泌表达PLD-PelB
pET22b(+)-PLDo/BL21(DE3)pET 22b(+)携带pld基因、OmpA信号肽分泌表达PLD-OmpA
pET22b(+)-PLDd/BL21(DE3)pET 22b(+)携带pld基因、DsbA 信号肽分泌表达PLD-DsbA
pET22b(+)-PLDf/BL21(DE3)pET 22b(+)携带pld基因、FhuD 信号肽分泌表达PLD-FhuD
pET28a(+)-PLDe/BL21(DE3)pET 28a(+)携带pld基因、EhaA自转运单元表面展示PLD-EhaA
表1  表达PLD的菌株
载体名称信号肽名称信号肽序列
pET22b(+)-PLDpPelBATG AAA TAC CTG CTG CCG ACC GCT GCT GCT GGT CTG CTG CTC CTC GCT GCC CAG CCG GCG ATG GCC
pET22b(+)-PLDoOmpAATG AAA AAA ACC GCG ATT GCG ATT GCG GTG GCG CTG GCG GGC TTT GCG ACC GTG GCG CAG GCC
pET22b(+)-PLDdDsbAATG AAA AAA ATT TGG CTG GCG CTG GCG GGC CTG GTG CTG GCG TTT AGC GCT AGC GCC
pET22b(+)-PLDfFhuDATG AGC GGC CTG CCG CTG ATT AGC CGC CGC CGC CTG CTG ACC GCG ATG GCG CTG AGC CCG CTG CTG TGG CAG ATG AAC ACC GCG CAT GCC
表2  分泌表达载体及其信号肽
图1  EhaA自转运载体示意
图2  PLD发酵条件优化
图3  诱导时长对PLD水解酶活的影响
图4  大肠杆菌的扫描电镜结果
图5  PS产率液相检测结果
1 DELWAIDE P J, GYSELYNCK-MAMBOURG A M, HURLET A, et al. Double-blind randomized controlled study of phosphatidylserine in senile demented patients[J]. Acta Neurologica Scandinavica, 1986, 73(2): 136-140. doi:10.1111/j.1600-0404.1986.tb07831.x
doi: 10.1111/j.1600-0404.1986.tb07831.x
2 VANCE J E, TASSEVA G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells[J]. Biochimica et Biophysica Acta (BBA): Molecular and Cell Biology of Lipids, 2013, 1831(3): 543-554. DOI:10.1016/j.bbalip. 2012.08.016
doi: 10.1016/j.bbalip. 2012.08.016
3 LIU B, HASSLER D F, SMITH G K, et al. Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain[J]. The Journal of Biological Chemistry, 1998, 273(51): 34472-34479. DOI:10.1074/jbc. 273.51.34472
doi: 10.1074/jbc. 273.51.34472
4 KATO-KATAOKA A, SAKAI M, EBINA R, et al. Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints[J]. Journal of Clinical Biochemistry and Nutrition, 2010, 47(3): 246-255. DOI:10.3164/jcbn.10-62
doi: 10.3164/jcbn.10-62
5 CROOK T, PETRIE W, WELLS C, et al. Effects of phosphatidylserine in Alzheimer's disease[J]. Psychopharmacology Bulletin, 1992, 28(1): 61-66.
6 JAGER R, PURPURA M, KINGSLEY M. Phospholipids and sports performance[J]. Journal of the International Society of Sports Nutrition, 2007, 4(1): 5. DOI:10.1186/1550-2783-4-5
doi: 10.1186/1550-2783-4-5
7 CHEN S, XU L, LI Y, et al. Bioconversion of phosphatidylserine by phospholipase D from Streptomyces racemochromogenes in a microaqueous water-immiscible organic solvent[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(9): 1939-1941. DOI:10.1271/bbb.130388
doi: 10.1271/bbb.130388
8 MAO X, LIU Q, QIU Y, et al. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine[J]. Journal of Biotechnology, 2017, 249: 51-58. DOI:10.1016/j.jbiotec.2017. 03.029
doi: 10.1016/j.jbiotec.2017. 03.029
9 OGINO C, NEGI Y, MATSUMIYA T, et al. Purification, characterization, and sequence determination of phospholipase D secreted by Streptoverticillium cinnamoneum [J]. The Journal of Biochemistry, 1999, 125(2): 263-269. DOI:10. 1093/oxfordjournals.jbchem.a022282
doi: 10. 1093/oxfordjournals.jbchem.a022282
10 HATANAKA T, NEGISHI T, KUBOTA-AKIZAWA M, et al. Purification, characterization, cloning and sequencing of phospholipase D from Streptomyces septatus TH-2[J]. Enzyme and Microbial Technology, 2002, 31(3): 233-241. DOI:10.1016/S0141-0229(02)00121-7
doi: 10.1016/S0141-0229(02)00121-7
11 LISCOVITCH M, CZARNY M, FIUCCI G, et al. Phospholipase D: Molecular and cell biology of a novel gene family[J]. Biochemical Journal, 2000, 345(3): 401-415. DOI:10.1042/bj3450401
doi: 10.1042/bj3450401
12 ZHOU W B, GONG J S, HOU H J, et al. Mining of a phospholipase D and its application in enzymatic preparation of phosphatidylserine[J]. Bioengineered, 2018, 9(1): 80-89. DOI:10.1080/21655979.2017. 1308992
doi: 10.1080/21655979.2017. 1308992
13 LIU Y H, LIN H, FU Y, et al. A novel process for phosphatidylserine production using a Pichiapastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system[J]. Food Chemistry, 2019, 274: 535-542. DOI:10.1016/j.foodchem.2018.08.105
doi: 10.1016/j.foodchem.2018.08.105
14 NAKAZAWA Y, SAGANE Y, SAKURAI S, et al. Large-scale production of phospholipase D from Streptomyces racemochromogenes and its application to soybean lecithin modification[J]. Applied Biochemistry and Biotechnology, 2011, 165(7/8): 1494-1506. DOI:10.1007/s12010-011-9370-4
doi: 10.1007/s12010-011-9370-4
15 HUANG T T, LYU X Q, LI J H, et al. Combinatorial fine-tuning of phospholipase D expression by Bacillus subtilis WB600 for the production of phosphatidylserine[J]. Journal of Microbiology and Biotechnology, 2018, 28(12): 2046-2056. doi:10.4014/jmb.1806.06048
doi: 10.4014/jmb.1806.06048
16 HOU H J, GONG J S, DONG Y X, et al. Phospholipase D engineering for improving the biocatalytic synthesis of phosphatidylserine[J]. Bioprocess and Biosystems Engineering, 2019, 42(7): 1185-1194. DOI:10.1007/s00449-019-02116-7
doi: 10.1007/s00449-019-02116-7
17 ZAMBONELLI C, MORANDI P, VANONI M A, et al. Cloning and expression in Escherichia coli of the gene encoding Streptomyces PMF PLD, a phospholipase D with high transphosphatidylation activity[J]. Enzyme and Microbial Technology, 2003, 33(5): 676-688. DOI:10.1016/S0141-0229(03)00190-X
doi: 10.1016/S0141-0229(03)00190-X
18 XIONG W D, ZENG X H, HO S H, et al. Strategies for achieving high-level and stable production of toxic Streptomyces phospholipase D in Escherichia coli [J]. Journal of Chemical Technology and Biotechnology, 2019, 94(4): 1220-1229. DOI:10.1002/jctb.5873
doi: 10.1002/jctb.5873
19 ZHANG H Y, CHU W Q, SUN J N, et al. Combining cell surface display and DNA-shuffling technology for directed evolution of Streptomyces phospholipase D and synthesis of phosphatidylserine[J]. Journal of Agricultural and Food Chemistry, 2019, 67(47): 13119-13126. DOI:10.1021/acs.jafc.9b05394
doi: 10.1021/acs.jafc.9b05394
20 UESUGI Y, HATANAKA T. Phospholipase D mechanism using Streptomyces PLD[J]. Biochimica et Biophysica Acta (BBA): Molecular and Cell Biology of Lipids, 2009, 1791(9): 962-969. DOI:10.1016/j.bbalip.2009.01.020
doi: 10.1016/j.bbalip.2009.01.020
21 IMAMURA S, HORIUTI Y. Enzymatic determination of phospholipase D activity with choline oxidase[J]. The Journal of Biochemistry, 1978, 83(3): 677-680. DOI:10.1093/oxfordjournals.jbchem.a131960
doi: 10.1093/oxfordjournals.jbchem.a131960
22 LEE J S, BAT-OCHIR M, DEMIREV A V, et al. Molecular cloning of the phospholipase D gene from Streptomyces sp. YU100 and its expression in Escherichia coli [J]. The Journal of Microbiology, 2009, 47(1): 116-122. DOI:10.1007/s12275-008-0161-8
doi: 10.1007/s12275-008-0161-8
23 MERGULHAO F J, SUMMERS D K, MONTEIRO G A. Recombinant protein secretion in Escherichia coli [J]. Biotechnology Advances, 2005, 23(3): 177-202. DOI:10.1016/j.biotechadv.2004. 11.003
doi: 10.1016/j.biotechadv.2004. 11.003
24 TOZAKIDIS I E, SICHWART S, TEESE M G, et al. Autotransporter mediated esterase display on Zymomonas mobilis and Zymobacter palmae [J]. Journal of Biotechnology, 2014, 191: 228-235. DOI:10.1016/j.jbiotec.2014.07.009
doi: 10.1016/j.jbiotec.2014.07.009
25 WELLS T J, SHERLOCK O, RIVAS L, et al. EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation[J]. Environmental Microbiology, 2008, 10(3): 589-604. DOI:10.1111/j.1462-2920.2007.01479.x
doi: 10.1111/j.1462-2920.2007.01479.x
26 MAURER J, JOSE J, MEYER T F. Autodisplay: One-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli [J]. Journal of Bacteriology, 1997, 179(3): 794-804. DOI:10.1128/jb.179.3.794-804. 1997
doi: 10.1128/jb.179.3.794-804. 1997
27 ECONOMOU A. Following the leader: Bacterial protein export through the Sec pathway[J]. Trends in Microbiology, 1999, 7(8): 315-320. DOI:10.1016/s0966-842x(99)01555-3
doi: 10.1016/s0966-842x(99)01555-3
28 MISHIMA N, MIZUMOTO K, IWASAKI Y, et al. Insertion of stabilizing loci in vectors of T7 RNA polymerase-mediated Escherichia coli expression systems: A case study on the plasmids involving foreign phospholipase D gene[J]. Biotechnology Progress, 1997, 13(6): 864-868. DOI:10.1021/bp970084o
doi: 10.1021/bp970084o
29 PAUL A, PLEVIN R. Evidence against a role for phospholipase-D in Mitogenesis [J]. Trends in Pharmacological Sciences, 1994, 15(6): 174. doi:10.1016/0165-6147(94)90140-6
doi: 10.1016/0165-6147(94)90140-6
30 IWASAKI Y, MIZUMOTO Y, OKADA T, et al. An aqueous suspension system for phospholipase D-mediated synthesis of PS without toxic organic solvent[J]. Journal of the American Oil Chemists Society, 2003, 80(7): 653-657. DOI:10.1007/s11746-003-0754-5
doi: 10.1007/s11746-003-0754-5
31 KLIBANOV A M. Improving enzymes by using them in organic solvents[J]. Nature, 2001, 409(6817): 241-246. DOI:10.1038/35051719
doi: 10.1038/35051719
32 DETZEL C, MAAS R, JOSE J. Autodisplay of Nitrilase from Alcaligenes faecalis in E. coli yields a whole cell biocatalyst for the synthesis of enantiomerically pure (R)-mandelic acid[J]. ChemCatChem, 2011, 3(4): 719-725. DOI:10.1002/cctc.201000382
doi: 10.1002/cctc.201000382
[1] 贺筱蓉;李永泉;赵小立;刘惠宾;周红军. 原生质体诱变选育去甲基金霉素高产菌[J]. 浙江大学学报(理学版), 1997, 24(2): 170-177.