Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (2): 213-224    DOI: 10.3785/j.issn.1008-9497.2023.02.011
地球科学     
西北太平洋热带气旋快速加强的环境场变量影响
童梦烨(),朱佩君()
浙江大学 地球科学学院,浙江 杭州 310027
The influence of environmental variables on the rapid intensification of tropical cyclones in the Western North Pacific
Mengye TONG(),Peijun ZHU()
School of Earth Science,Zhejiang University,Hangzhou 310027,China
 全文: PDF(5923 KB)   HTML( 3 )
摘要:

利用中国气象局(CMA)整编的西北太平洋1999—2018年热带气旋最佳路径数据集和美国国家环境预报中心(NCEP)再分析资料,结合均值、标准差、极端天气阈值等方法,确定热带气旋快速加强(RI)的阈值为-29.82 hPa·(24 h)-1,统计发现西北太平洋地区RI主要发生在7—10月,集中在5°N~20°N、120°E~160°E洋面。通过对RI与非快速加强(non-RI)的动态合成分析,对比2类样本多个环境变量的差异,结果发现:(1)RI对环境变量的响应时间与相关系数相关,对RI响应时间越早的环境变量,与RI的相关性越大;(2)对RI影响较显著的是海表面温度、高层散度和垂直风切变,其次是中层相对湿度和低层散度,影响较弱的是低层水汽通量散度和相对涡度;(3)热带气旋初始强度影响各环境变量对RI过程发生的贡献。

关键词: 热带气旋快速加强快速加强阈值环境变量    
Abstract:

Using the best track data set of tropical cyclones in the Western North Pacific (WNP) from 1999 to 2018 compiled by the China Meteorological Administration (CMA) and National Centers for Environmental Prediction (NCEP) reanalysis data, combined with the statistical significance of the mean and standard deviation, extreme weather threshold and other methods, the definition threshold of rapid intensification (RI) is determined to be -29.82 hPa·(24 h)-1. Statistics show that RI mainly occurs in the Western North Pacific region from July to October, concentrated on the ocean surface of 5°N~20 ° N and 120°E~160°E. Through the dynamic synthesis analysis of RI and non-rapid intensification (non-RI), it is found that: (1) the response time of RI to environmental variables is significantly related to the correlation coefficient, and the earlier the environmental factors affect RI, the greater the correlation coefficient with RI; (2) The most obvious factors affecting RI are sea surface temperature(SST), high-level divergence and vertical wind shear, followed by middle-level relative humidity and low-level divergence, while low-level water vapor flux divergence and relative vorticity are the weakest; (3) The initial intensity of tropical cyclone also affects the contribution of different environmental factors to the occurrence of RI.

Key words: rapid intensification of tropical cyclone    threshold of rapid intensification    environmental variables
收稿日期: 2022-05-06 出版日期: 2023-03-21
CLC:  P 445  
基金资助: 国家自然科学基金资助项目(41930967)
通讯作者: 朱佩君     E-mail: 21938001@zju.edu.cn;zhupj@zju.edu.cn
作者简介: 童梦烨(1995—),ORCID:https://orcid.org/0000-0002-5468-7392,男,硕士研究生,主要从事天气和气候研究,E-mail:21938001@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
童梦烨
朱佩君

引用本文:

童梦烨,朱佩君. 西北太平洋热带气旋快速加强的环境场变量影响[J]. 浙江大学学报(理学版), 2023, 50(2): 213-224.

Mengye TONG,Peijun ZHU. The influence of environmental variables on the rapid intensification of tropical cyclones in the Western North Pacific. Journal of Zhejiang University (Science Edition), 2023, 50(2): 213-224.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.02.011        https://www.zjujournals.com/sci/CN/Y2023/V50/I2/213

图1  在4个时间间隔下使用2种阈值方法的RI样本占比
时间间隔/hΔP-2σ/hPa偏度峰度
6-12.180.527.38
12-18.310.384.95
18-24.150.303.63
24-29.820.222.78
表1  在4个时间间隔下变压值小于ΔP-2σ的样本统计特征
类型定义强度变化范围样本数
RIΔP≤-ΔP-2σΔP≤-29.82441
non-RISIPP-2σP≤-ΔP-29.82<ΔP≤-10.801 709
IIPP-σP<0-10.80<ΔP<04 669
表2  不同类型加强过程的定义
图2  1999—2018年热带气旋的RI样本数(标准化后)与总加强样本数(标准化后)的年际变化
图3  1999—2018年热带气旋RI样本数、占比月际变化
图 4  1999—2018年RI过程空间分布红点为RI过程的起点,黑线为RI过程的移动轨迹。
强度热带低压热带风暴强热带风暴台风

台风

超强台风
样本数661170138579
表3  不同初始强度热带气旋的RI样本数
环境变量区域平均值范围
850 hPa散度4°×4°
200 hPa散度4°×4°
200~850 hPa垂直风切变10°×10°
500 hPa相对湿度10°×10°
925 hPa水汽通量散度10°×10°
850 hPa相对涡度10°×10°
海温10°×10°
表4  环境变量及其区域平均值范围
图5  RI与non-RI过程850 hPa散度中心区域的平均散度及其与所有加强样本变压值相关系数横坐标负值表示过程发生前,正值表示过程发生后;柱状图以纯色(斜线)填充代表RI与non-RI的t检验在95%信度水平下显著(不显著),即二者均值有(无)显著差异;实(虚)线上的圆点代表该时次的相关系数在95%信度水平下显著(不显著);下同。
图6  不同强度热带气旋在3类加强过程中850 hPa的散度场合成结果(a)以及区域平均散度(b)图(a)中右下角框内数据为样本数;图(b)中横坐标1~6对应强度依次为热带低压至超强台风;下同
图7  RI与non-RI过程200 hPa散度中心区域的平均散度及其与所有加强样本变压值的相关系数
图8  不同强度热带气旋在3类加强过程中200 hPa散度场合成结果(a)以及区域平均散度(b)
图9  RI与non-RI过程200~850 hPa垂直风切变及其与所有加强样本变压值的相关系数
图10  RI与non-RI过程处于200~850 hPa垂直风切变区间下的频率分布(a)以及区域平均垂直风切变(b)(a) and regional average vertical wind shear (b)
图11  RI与non-RI过程500 hPa相对湿度及其与所有加强样本变压值的相关系数
图12  不同强度热带气旋在3类加强过程中500 hPa相对湿度合成结果(a)以及区域平均相对湿度(b)
图13  RI与non-RI过程的925 hPa水汽通量散度和850 hPa相对涡度及其与所有加强样本变压值的相关系数
图14  RI与non-RI过程的海表面温度及其与所有加强样本变压值的相关系数
图15  不同强度热带气旋在3类加强过程中的海温合成结果(a)以及区域平均海温(b)
环境变量RI响应时间/h相关系数最大值当热带气旋强度相同时RI是否强于non-RI
200 hPa散度-30-0.19
850 hPa散度-120.09是(仅当热带气旋为强台风、超强台风)
200~850 hPa垂直风切变-300.21是(仅当热带气旋为热带风暴、强热带风暴)
500 hPa相对湿度-18-0.11是(仅当热带气旋为强热带风暴及更强等级)
925 hPa水汽通量散度00.12
850 hPa相对涡度6-0.07
海温-30-0.21
表5  环境变量对RI的影响特征
1 陈联寿, 端义宏, 宋丽莉, 等. 台风预报及其灾害[M]. 北京: 气象出版社, 2012.
CHEN L S, DUAN Y H, SONG L L, et al. Typhoon Forecast and its Disasters[M]. Beijing: China Meteorological Press, 2012.
2 阎俊岳. 近海热带气旋迅速加强的气候特征[J]. 应用气象学报, 1996, 7(1): 28-32, 34-35.
YAN J Y. Climatic characteristics of rapid intensification of offshore tropical cyclones[J]. Journal of Applied Meteorological Science, 1996, 7(1): 28-32, 34-35.
3 SHI D L, CHEN G H, WANG K, et al. Evaluation of two initialization schemes for simulating the rapid intensification of typhoon Lekima (2019)[J]. Advances in Atmospheric Sciences, 2020, 37(9): 987-1006. DOI: 10.1007/s00376-020-2038-7
doi: 10.1007/s00376-020-2038-7
4 SINGH V K, ROXY M K, DESHPANDE M. Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani[J]. Scientific Reports, 2021, 11(1): 1-10. DOI: 10.1038/s41598-021-82680-9
doi: 10.1038/s41598-021-82680-9
5 ITO H. Aspects of Typhoon Development: As Reviewed from Observational Data in the Lower Troposphere[R]. Tokyo:Tokyo Institute of Technology, 1963: 121-126.
6 KAPLAN J, DEMARIA M, KNAFF J A. A revised tropical cyclone rapid intensification index for the Atlantic and Eastern North Pacific basins[J]. Weather and Forecasting, 2010, 25(1): 220-241. DOI: 10. 1175/2009WAF2222280.1
doi: 10. 1175/2009WAF2222280.1
7 王伟. 西北太平洋快速增强热带气旋及其与垂直风切变的关系[D]. 南京: 南京信息工程大学, 2013.
WANG W. Research on Rapid Intensification Tropical Cyclone and its Relationship with the Vertical Wind Shear over Western North Pacific[D]. Nanjing: Nanjing University of Information Science and Technology, 2013.
8 CHEN X M, XUE M, FANG J. Rapid intensification of typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification[J]. Journal of the Atmospheric Sciences, 2018, 75(12): 4313-4335. DOI: 10.1175/JAS-D-18-0017.1
doi: 10.1175/JAS-D-18-0017.1
9 FUDEYASU H, ITO K, MIYAMOTO Y. Characteristics of tropical cyclone rapid intensification over the Western North Pacific[J]. Journal of Climate, 2018, 31(21): 8917-8930. DOI: 10.1175/JCLI-D-17-0653.1
doi: 10.1175/JCLI-D-17-0653.1
10 PATERSON L A, HANSTRUM B N, DAVIDSON N E, et al. Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region[J]. Monthly Weather Review, 2005, 133(12): 3644-3660. DOI: 10.1175/MWR3041.1
doi: 10.1175/MWR3041.1
11 SINGH V K, ROXY M K, DESHPANDE M. Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani[J]. Scientific Reports, 2021, 11(1): 1-10. DOI: 10.1038/s41598-021-82680-9
doi: 10.1038/s41598-021-82680-9
12 胡春梅, 端义宏, 余晖, 等. 华南地区热带气旋登陆前强度突变的大尺度环境诊断分析[J]. 热带气象学报, 2005, 21(4): 377-382. DOI: 10.3969/j.issn. 1004-4965.2005.04.005
HU C M, DUAN Y H, YU H, et al. The diagnostic analysis of the rapid change in tropical cyclones intensity before landfall in South China[J]. Journal of Tropical Meteorology, 2005, 21(4): 377-382. DOI: 10.3969/j.issn.1004-4965.2005.04.005
doi: 10.3969/j.issn.1004-4965.2005.04.005
13 周冠博, 董林, 柳龙生, 等. 2007号台风“海高斯”快速加强的成因分析[J]. 海洋气象学报, 2021, 41(1): 100-108. DOI: 10.19513/j.cnki.issn2096-3599.2021.01.010
ZHOU G B, DONG L, LIU L S, et al. Analysis on causes of rapid offshore strengthening of typhoon HIGOS (2020)[J]. Journal of Marine Meteorology, 2021, 41(1): 100-108. DOI: 10.19513/j.cnki.issn2096-3599.2021.01.010
doi: 10.19513/j.cnki.issn2096-3599.2021.01.010
14 韩瑛, 伍荣生. 冷空气入侵对热带气旋发生发展的影响[J]. 地球物理学报, 2008, 51(5): 1321-1332. DOI: 10.3321/j.issn:0001-5733.2008.05.006
HAN Y, WU R S. The effect of cold air intrusion on the development of tropical cyclone[J]. Chinese Journal of Geophysics, 2008, 51(5): 1321-1332. DOI: 10.3321/j.issn:0001-5733.2008.05.006
doi: 10.3321/j.issn:0001-5733.2008.05.006
15 WANG X D, WANG C Z, ZHANG L P, et al. Multidecadal variability of tropical cyclone rapid intensification in the Western North Pacific[J]. Journal of Climate, 2015, 28(9): 3806-3820. DOI: 10.1175/JCLI-D-14-00400.1
doi: 10.1175/JCLI-D-14-00400.1
16 GRAY W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10): 669-700. doi:10.1175/1520-0493(1968)096<0669:gvotoo>2.0.co;2
doi: 10.1175/1520-0493(1968)096<0669:gvotoo>2.0.co;2
17 朱晶晶, 赵小平, 吴胜安, 等. 太平洋年代际振荡与严重影响海南岛强台风事件的关联性[J]. 气象科技, 2020, 48(6): 70-78. DOI: 10.19517/j.1671-6345.20190463
ZHU J J, ZHAO X P, WU S A, et al. Relevance of Pacific decadal oscillation and violent typhoon events seriously affecting Hainan Island in recent 70 years[J]. Meteorological Science and Technology, 2020, 48(6): 70-78. DOI: 10.19517/j.1671-6345.20190463
doi: 10.19517/j.1671-6345.20190463
18 李英. 登陆热带气旋维持机制的研究[D]. 南京: 中国气象科学研究院, 2004.
LI Y. Research on the Maintenance Mechanism of Landing Tropical Cyclones[D]. Nanjing: China Academy of Meteorological Sciences, 2004.
19 BALAGURU K, FOLTZ G R, LEUNG L R. Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic[J]. Geophysical Research Letters, 2018, 45(9): 4238-4247. DOI: 10.1029/2018GL077597
doi: 10.1029/2018GL077597
20 ZEHR R M. Environmental vertical wind shear with Hurricane Bertha (1996)[J]. Weather and Forecasting, 2003, 18(2): 345-356. doi:10.1175/1520-0434(2003)018<0345:evwswh>2.0.co;2
doi: 10.1175/1520-0434(2003)018<0345:evwswh>2.0.co;2
[1] 刘瑞, 朱佩君, 翟国庆. 基于ISCCP数据集的梅雨期影响浙江省及周边地区的对流系统特征分析[J]. 浙江大学学报(理学版), 2021, 48(6): 728-734.