Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (6): 734-742    DOI: 10.3785/j.issn.1008-9497.2022.06.012
地球科学     
东准噶尔卡拉麦里地区断裂系统分形特征及成矿意义
孙文洁1(),吴智平1(),姜颜良2,程燕君1
1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
2.中国石化石油物探技术研究院,江苏 南京 211103
Fractal characteristics and metallogenic significance of fault systems in Kalamaili area, Eastern Junggar
Wenjie SUN1(),Zhiping WU1(),Yanliang JIANG2,Yanjun CHENG1
1.School of Geoscience,China University of Petroleum(East China),Qingdao 266580,Shandong Province,China
2.Sinopec Geophysical Research Institute,Nanjing 211103,China
 全文: PDF(2079 KB)   HTML( 6 )
摘要:

准噶尔盆地东北缘卡拉麦里地区是我国重要的金矿分布区,区内断裂系统错综复杂,控矿作用显著,需对不同方位、不同规模断裂系统的空间分布规律、发育复杂程度及对金矿床的控制规律进行深入研究,目前尚未见对该区域断裂系统的分形特征与金矿分布关系研究。对准噶尔盆地东北缘卡拉麦里地区断裂构造进行了不同尺度、不同方位的分形维数计算,得到全部断裂构造的分形维数为1.421,各方向断裂构造的分形维数:NW向为1.382,NWW向为1.223,近EW向为0.976,NE向为0.960;全部断裂构造和NW向断裂构造的分形维数均大于能反映地质体连通性的分形维数临界值(1.22~1.38)。结果表明,东准噶尔卡拉麦里地区的地质体具有较高的连通性,为金成矿热液提供了有利的运移通道和汇聚场所,NW向断裂构造发育最复杂,为研究区主导性导矿构造,对金矿的形成具有控制作用;这与研究区绝大部分金矿床(点)主要沿卡拉麦里深大断裂和清水—苏吉泉深大断裂派生的NW至NWW向断裂展布的特征相吻合。

关键词: 分形维数断裂分布金矿分布东准噶尔卡拉麦里地区    
Abstract:

Kalamaili area in the northeastern margin of Junggar Basin is an important gold deposit distribution area in China. The fault systems in the area are complex and play a significant ore-controlling role. At present, no scholars have studied the relationship between the fractal characteristics of faults and the distribution of gold deposits in this area. The spatial distribution law, development complexity degree and the control law of faults in different directions and scales in this area need be further studied. In this paper, the fractal dimension of the fault system in the study area is calculated at different scales and in different directions. The fractal dimension of all faults is 1.421, and the fractal dimension of faults is 1.382 in NW direction, 1.223 in NWW direction, 0.998 in EW direction and 0.960 in NE direction. The fractal dimension values of all faults and NW faults in this area are greater than the critical value of fractal dimension (1.22-1.38) that reflects the connectivity of geological bodies. The results show that the geological bodies in Kalamaili area of East Junggar have high connectivity, which provides a favorable migration channel and convergence place for gold mineralization hydrothermal fluid. The NW trending fault structure is the most complex, which is the dominant ore-guiding structure in the study area and plays a controlling role in the formation of gold deposits.This is consistent with the distribution characteristics of NW to NWW trending faults derived from Kalamaili deep fault and Qingshui-Sujiquan fault in most gold deposits (points) in the study area.

Key words: fractal dimension    fracture distribution    gold distribution    Kalamaili region in Eastern Junggar
收稿日期: 2021-11-24 出版日期: 2022-11-23
CLC:  P 542  
基金资助: 国家自然科学基金资助项目(42072169)
通讯作者: 吴智平     E-mail: sunwenjieqiyue@163.com;wuzp@upc.edu.cn
作者简介: 孙文洁(1998—),ORCID:https://orcid.org/0000-0002-6564-0530,女,硕士研究生,主要从事构造地质学研究,E-mail:sunwenjieqiyue@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙文洁
吴智平
姜颜良
程燕君

引用本文:

孙文洁,吴智平,姜颜良,程燕君. 东准噶尔卡拉麦里地区断裂系统分形特征及成矿意义[J]. 浙江大学学报(理学版), 2022, 49(6): 734-742.

Wenjie SUN,Zhiping WU,Yanliang JIANG,Yanjun CHENG. Fractal characteristics and metallogenic significance of fault systems in Kalamaili area, Eastern Junggar. Journal of Zhejiang University (Science Edition), 2022, 49(6): 734-742.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.06.012        https://www.zjujournals.com/sci/CN/Y2022/V49/I6/734

图1  东准噶尔卡拉麦里地区地质(据文献[14]修改)
图2  卡拉麦里地区断裂系统成因模式
图3  东准噶尔卡拉麦里地区不同级别断裂走向玫瑰花图
图4  东准噶尔卡拉麦里地区断层平面展布及金矿分布
项目r/km
6.05.55.04.54.03.53.02.52.01.51.0
Nr3443884585406397969921 3151 7692 5874 240
lg r0.7780.7400.6990.6530.6020.5440.4770.3980.3010.1760
lgNr2.5372.5892.6612.7342.8062.9012.9973.1193.2483.4133.627
表1  卡拉麦里地区断裂构造分形维数计算结果
图5  卡拉麦里地区全部断裂构造分形维数双对数图
方向项目r/km
6.05.55.04.54.03.53.02.52.01.51.0
NWNr1932172522943534265176519361 3602 250
lg r0.7780.7400.6990.6530.6020.5440.4770.3980.3010.1760
lgNr2.2862.3362.4012.4682.5482.6292.7132.8142.9713.1343.352
NWWNr1531741932092462893524626118641 300
lgr0.7780.7400.6990.6530.6020.5440.4770.3980.3010.1760
lgNr2.1852.2412.2862.3202.3912.4612.5472.6652.7862.9373.114
近EWNr143144166193210229280334414543790
lg r0.7780.7400.6990.6530.6020.5440.4770.3980.3010.1760
lgNr2.1552.1582.2202.2862.3222.3602.4472.5242.6172.7352.898
NENr118130139148170197228270341446646
lg r0.7780.7400.6990.6530.6020.5440.4770.3980.3010.1760
lgNr2.0722.1142.1432.1702.2302.2942.3582.4312.5332.6492.810
表2  卡拉麦里地区不同方位断裂构造分形维数计算结果
图6  卡拉麦里地区不同方向断裂构造分形维数双对数图
1 朱晓华. 地理空间信息的分形与分维[M].北京: 测绘出版社,2007: 1-6.
ZHU X H. Fractal and Fractal Dimensions of Spatial Geo-Information[M]. Beijing: Surveying and Mapping Publishing House, 2007: 1-6.
2 康永尚, 沈金松, 谌卓恒. 现代数学地质[M]. 北京: 测绘出版社, 2005: 160-172.
KANG Y S, SHEN J S, CHEN Z H. Modern Mathematical Geology[M]. Beijing: Surveying and Mapping Publishing House, 2005: 160-172.
3 李飞, 刘国生, 周庆卫, 等. 分形理论在断裂与矿产关系研究中的应用[J]. 合肥工业大学学报(自然科学版), 2016, 39(5): 701-706. DOI:10.3969/j.issn.1003-5060.2016.05.024
LI F, LIU G S, ZHOU Q W, et al. Application of fractal theory in the study of the relationship between fracture and mineral[J]. Journal of Hefei University of Technology (Natural Science Edition), 2016, 39(5): 701-706. DOI:10.3969/j.issn.1003-5060. 2016.05.024
doi: 10.3969/j.issn.1003-5060. 2016.05.024
4 周庆卫. 郯庐断裂带对招远地区金矿控制规律研究及其意义[D].合肥: 合肥工业大学,2014.
ZHOU Q W. Research on the Regularities of Tanlu Fault Zone Controls Zhaoyuan Gold Ore Deposits[D]. Hefei: Hefei University of Technology, 2014.
5 谭凯旋, 郝新才, 戴塔根. 中国断裂构造的分形特征及其大地构造意义[J].大地构造与成矿学,1998(1): 17-20. DOI:10.16539/j.ddgzyckx.1998.01.003
TAN K X, HAO X C, DAI T G. Fractal features of fractures in China and their implication for geotectonics[J]. Geotectonica et Metallogenia, 1998(1): 17-20. DOI:10.16539/j.ddgzyckx.1998.01.003
doi: 10.16539/j.ddgzyckx.1998.01.003
6 谢焱石, 谭凯旋. 断裂构造的分形研究及其地质应用[J]. 地质地球化学, 2002, 30(1): 71-77. DOI:10. 3969/j.issn.1672-9250.2002.01.012
XIE Y S, TAN K X. Fractal research on fracture structures and application in geology[J]. Geology and Geochemistry, 2002, 30(1): 71-77. DOI:10.3969/j.issn.1672-9250.2002.01.012
doi: 10.3969/j.issn.1672-9250.2002.01.012
7 徐建华. 现代地理学中的数学方法[M]. 北京: 高等教育出版社, 2002: 392-416.
XU J H. Mathematical Methods in Modern Geography[M]. Beijing: Higher Education Press, 2002: 392-416.
8 韩琼, 赵同阳, 郑加行, 等. 东准噶尔卡拉麦里金矿带构造控矿特征及有利度分析[J]. 地质力学学报, 2019, 25(S1): 21-26. DOI:10.12090/j.issn.1006-6616.2019. 25.S1.004
HAN Q, ZHAO T Y, ZHENG J X, et al. Structural ore-controlling characteristics and favorability analysis of the Kalamaili Gold ore belt in East Junggar[J]. Journal of Geomechanics, 2019, 25(S1): 21-26. DOI:10.12090/j.issn.1006-6616.2019.25.S1.004
doi: 10.12090/j.issn.1006-6616.2019.25.S1.004
9 曾联波, 金之钧, 李京昌, 等. 柴达木盆地北缘断裂构造分形特征与油气分布关系研究[J]. 地质科学, 2001, 36(2): 241-247. DOI:10.3321/j.issn:0563-5020. 2001.02.013
ZENG L B, JIN Z J, LI J C, et al. Fractal characteristics of fractural structures and its relation to oil-gas distribution in North Qaidam Basin[J]. Chinese Journal of Geology, 2001, 36(2): 241-247. DOI:10.3321/j.issn:0563-5020.2001.02.013
doi: 10.3321/j.issn:0563-5020.2001.02.013
10 韩喜彬, 梁金城, 冯佐海, 等. 桂东南地区断裂构造分形特征与金银成矿关系研究[J]. 广西科学, 2003, 10(2): 117-121. DOI:10.3969/j.issn.1005-9164. 2003.02.011
HAN X B, LIANG J C, FENG Z H, et al. Fractal features of fractures and their relation to silver-gold mineralization in Southeast Guangxi[J]. Guangxi Sciences, 2003, 10(2): 117-121. DOI:10.3969/j.issn.1005-9164.2003.02.011
doi: 10.3969/j.issn.1005-9164.2003.02.011
11 董富权. 西藏古堆—隆子地区断裂构造分形特征及其地质意义[J]. 黄金科学技术, 2012, 20(6): 41-45. DOI:10.3969/j.issn.1005-2518.2012.06.008
DONG F Q. Fractal characteristics of fractures and its geological significance in Gudui-Longzi region in Southern Tibet[J]. Gold Science and Technology, 2012, 20(6): 41-45. DOI:10.3969/j.issn.1005-2518.2012.06.008
doi: 10.3969/j.issn.1005-2518.2012.06.008
12 路彦明, 张玉杰, 潘懋, 等. 新疆东准噶尔地区金矿类型、地质特征[J]. 地球学报, 2010, 31(3): 434-442. doi:10.3975/cagsb.2010.03.16
LU Y M, ZHANG Y J, PAN M, et al. Types and geological characteristics of gold deposits in East Junggar, Xinjiang[J]. Acta Geoscientica Sinica, 2012, 20(4): 434-442. doi:10.3975/cagsb.2010.03.16
doi: 10.3975/cagsb.2010.03.16
13 张栋, 路彦明, 葛良胜, 等. 东准噶尔卡拉麦里地区金铜多金属成矿系统和地球动力学[J]. 地质论评, 2015, 61(4): 797-816. DOI:10.16509/j.georeview. 2015. 04.008
ZHANG D, LU Y M, GE L S, et al. Metallogenic systems of polymetallic gold and copper deposits and related metallogenic geodynamic model in Kalamaili of Eastern Junggar, Xinjiang[J]. Geological Review, 2015, 61(4): 797-816. DOI:10.16509/j.georeview. 2015.04.008
doi: 10.16509/j.georeview. 2015.04.008
14 宋利宏. 卡拉麦里断裂带形成与演化规律[D]. 合肥: 合肥工业大学, 2015.
SONG L H. Formation and Evolution of Kalamaili Fault Zone[D]. Hefei: Hefei University of Technology, 2015.
15 张峰, 陈建平, 徐涛, 等. 东准噶尔晚古生代依旧存在俯冲消减作用:来自石炭纪火山岩岩石学、地球化学及年代学证据[J]. 大地构造与成矿学, 2014, 38(1): 140-156. doi:10.3969/j.issn.1001-1552.2014.01.014
ZHANG F, CHEN J P, XU T, et al. Late paleozoic subduction in the Eastern Junggar: Evidence from the petrology, geochemistry and geochronology of carboniferous volcanic rocks[J]. Geotectonica et Metallogenia, 2014, 38(1): 140-156. doi:10.3969/j.issn.1001-1552.2014.01.014
doi: 10.3969/j.issn.1001-1552.2014.01.014
16 顾雪祥, 章永梅, 葛战林, 等. 新疆东准噶尔卡拉麦里造山型金成矿系统与区域构造演化[J]. 地学前缘, 2020, 27(2): 254-275. DOI:10.13745/j.esf.sf.2020.3.21
GU X X, ZHANG Y M, GE Z L, et al. The orogenic Au mineralization system and regional tectonic evolution in the Kalamaili area,East Junggar, Xinjiang[J]. Earth Science Frontiers, 2017, 25(2): 43-51. DOI:10.13745/j.esf.sf.2020.3.21
doi: 10.13745/j.esf.sf.2020.3.21
17 陈伟志, 顾雪祥, 章永梅, 等. 新疆东准噶尔金水泉金矿床地质特征、成矿时代及其地质意义[J]. 地质通报, 2019, 38(7): 1240-1255. doi:10.12097/j.issn.1671-2552.2019.07.016
CHEN W Z, GU X X, ZHANG Y M, et al. Geological features and geochronology of the Jinshuiquan gold deposit in the East Junggar, Xinjiang[J]. Geological Bulletin of China, 2019, 38(7): 1240-1255. doi:10.12097/j.issn.1671-2552.2019.07.016
doi: 10.12097/j.issn.1671-2552.2019.07.016
18 路彦明, 赵军, 陈祥, 等. 东准噶尔双泉地区韧-脆性剪切带与金矿成矿[J]. 新疆地质, 2007, 25(2): 164-168. DOI:10.3969/j.issn.1000-8845.2007.02.008
LU Y M, ZHAO J, CHEN X, et al. The relationship between ductile-brittle shear zones and mineralization of gold deposits in Shuangquan Area, Eastern Junggar[J]. Xinjiang Geology, 2017, 25(2): 43-51. DOI:10.3969/j.issn.1000-8845.2007. 02.008
doi: 10.3969/j.issn.1000-8845.2007. 02.008
19 关键, 曹锋, 陈勇. 准噶尔盆地卡拉麦里山前平地泉组勘探潜力[J]. 新疆石油地质, 2011, 32(2): 115-118.
GUAN J, CAO F, CHEN Y. Exploration potentials of pingdiquan formation of permian in Kelamaili Piedmont of Junggar Basin[J]. Xinjiang Petroleum Geology, 2011, 32(2): 115-118.
20 刘啸虎. 准噶尔盆地克拉美丽山前构造及演化特征分析研究[D]. 南充: 西南石油大学, 2016.
LIU X H. Structural and Evolutionary Characteristics of Kelamaili Piedmont in Junggar Basin[D]. Nanchong: Southwest Petroleum University, 2016.
21 许维新, 张恺, 高明远, 等. 准噶尔盆地东北缘板块构造演化及其对油气形成的控制[J]. 石油与天然气地质, 1987(2): 163-170. doi:10.11743/ogg19870208
XU W X, ZHANG K, GAO M Y, et al. Evolution of plate tectonics of the northeastern Junggar Basin and its control over oil and gas[J]. Oil & Gas Geology, 1987(2): 163-170. doi:10.11743/ogg19870208
doi: 10.11743/ogg19870208
22 陈汉军, 段铁军, 周凌方, 等. 准噶尔盆地东部边缘区构造格架及构造样式[J]. 新疆石油地质, 2001, 22(30): 202-205. DOI:10.3969/j.issn.1001-3873. 2001.03.009
CHEN H J, DUAN T J, ZHOU L F, et al. Tectonic framework and tectonic style of the eastern Margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2001, 22(30): 202-205. DOI:10.3969/j.issn.1001-3873.2001.03.009
doi: 10.3969/j.issn.1001-3873.2001.03.009
23 商丰凯. 叠合盆地凸起区多期复杂断裂特征及形成机制:以准噶尔盆地车排子凸起为例[J]. 断块油气田, 2020, 27(3): 278-283. DOI:10.6056/dkyqt202003002
SHANG F K. Characteristics and formation mechanism of multi-stage complex fault system of uplift in superimposed basin: A case study of Chepaizi Uplift, Junggar Basin, NW China[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 278-283. DOI:10. 6056/dkyqt202003002
doi: 10. 6056/dkyqt202003002
24 AYDIN A, PAGE B M. Diverse pliocene-quaternary tectonics in a transform environment, San Francisco Bay region, California[J]. GSA Bulletin, 1984, 95(11): 1303-1317. doi:10.1130/0016-7606(1984)95<1303:dptiat>2.0.co;2
doi: 10.1130/0016-7606(1984)95<1303:dptiat>2.0.co;2
25 SYLVESTER A G. Strike-slip faults[J]. Geological Society of America Bulletin, 1988, 100(11): 1666-1703. DOI:10.1130/0016-7606(1988)100 〈1666:SSF〉2.3.CO;2
doi: 10.1130/0016-7606(1988)100
26 高春升. 分形模型在矿物颗粒表面形态特征研究中的应用[D]. 北京: 中国地质大学(北京), 2020.
GAO C S. Application of Fractal Models to Research Mineral Particles Surface Morphology: Magnetite in Luoyang Iron Deposit of Fujian Province[D]. Beijing: China University of Geosciences (Beijing), 2020.
27 ZHANG X, SANDERSON D J. Fractal structure and deformation of fractured rock masses[A]// KRUHL J H. Fractal and Dynamical Systems in Geosciences[M]. New York: Spring Verlag, 1994: 37-51. doi:10.1007/978-3-662-07304-9_3
doi: 10.1007/978-3-662-07304-9_3
28 廖家飞, 冯佐海, 罗畅权, 等. 广西贺州水岩坝矿田断裂构造分形特征分析[J]. 矿床地质, 2012, 31(3): 459-464. DOI:10.3969/j.issn.0258-7106. 2012.03.005
LIAO J F, FENG Z H, LUO C Q, et al. Fractal characteristics analysis of fractures in Shuiyanba ore field of Hezhou, Guangxi[J]. Mineral Deposits, 2012, 31(3): 459-464. DOI:10.3969/j.issn.0258-7106. 2012.03.005
doi: 10.3969/j.issn.0258-7106. 2012.03.005
29 雷天赐, 崔放, 余凤鸣, 等. 基于遥感技术的断裂构造分形特征及其地质意义研究:以湘南九嶷山地区为例[J]. 地质论评, 2012, 58(3): 594-600. DOI:10.3969/j.issn.0371-5736.2012.03.020
LEI T C, CUI F, YU F M, et al. Study on fractal feature of fault structure and its geological implications based on remote sensing: A case study of Jiuyi Mountain Area, Southern Hunan[J]. Geological Review, 2012, 58(3): 594-600. DOI:10.3969/j.issn.0371-5736.2012.03.020
doi: 10.3969/j.issn.0371-5736.2012.03.020
30 成秋明. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法[J]. 地球科学(中国地质大学学报), 2006, 31(3): 337-348. DOI:10. 3321/j.issn:1000-2383.2006.03.009
CHENG Q M. Singularity-generalized self-similarity-fractal spectrum (3S) models[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2006, 31(3): 337-348. DOI:10.3321/j.issn:1000-2383.2006.03.009
doi: 10.3321/j.issn:1000-2383.2006.03.009
[1] 夏阿根,金进生,劳燕峰,罗孟波. 无格点基底表面分形凝聚体的计算机模拟[J]. 浙江大学学报(理学版), 2000, 27(4): 394-397.
[2] 阮火军 . 递归 IFS维数公式的推广 [J]. 浙江大学学报(理学版), 2000, 27(3): 243-246.