Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (5): 613-622    DOI: 10.3785/j.issn.1008-9497.2022.05.013
环境科学     
基于水足迹的嘉兴市农业产业结构优化模型
秦智雅1(),俞洁2,孙国金3,王飞儿1,4()
1.浙江大学 环境与资源学院,浙江 杭州 310058
2.浙江省环境监测中心,浙江 杭州 310012
3.浙江水利水电学院,浙江 杭州 310018
4.浙江生态文明研究院,浙江 安吉 313300
Optimization model of agricultural industrial structure in Jiaxing city based on water footprint
Zhiya QIN1(),Jie YU2,Guojin SUN3,Feier WANG1,4()
1.College of Environmental and Resource Sciences,Zhejiang University,Hangzhou 310058,China
2.Zhejiang Environmental Monitoring Center,Hangzhou 310012,China
3.Zhejiang University of Water Resources and Electric Power,Hangzhou 310018,China
4.Zhejiang Ecological Civilization Academy,Anji 313300,Zhejiang Province,China
 全文: PDF(1065 KB)   HTML( 2 )
摘要:

农业产业结构是决定农业用水效率的重要因素之一。相较于传统用水评价,基于水足迹的评价能更全面地反映水资源的过程消耗。在对嘉兴市农业蓝水、绿水及灰水足迹核算基础上,用农业水资源压力指数(AWSI)评估区域农业用水压力,构建了基于水足迹的农业产业结构优化模型,分析了节水型、均衡型和发展型3种农业产业结构调整情景。结果表明,嘉兴市农业水足迹以绿水为主,蓝水足迹、绿水足迹和灰水足迹的占比分别为11.6%,51.7%和36.8%,AWSI为0.45,存在较高的水资源压力;通过调整产业结构,3种目标情景下的农业水足迹及经济效益均实现了不同程度优化,AWSI分别降低4.54%,3.89%和0.74%,有效减轻区域水资源压力。研究表明,通过基于水足迹的农业产业结构调整,有效提高了区域集约化用水效率,减轻了用水压力。研究可为农业水资源管理决策提供参考。

关键词: 农业水足迹产业调整多目标优化    
Abstract:

The structure of agricultural industry is an important factor that determines the efficiency of agricultural water use. Compared with traditional water use evaluation, water footprint reflects the process consumption of water resources more comprehensively. Based on the accounting of water footprints of agricultural blue water, green water and grey water in Jiaxing city, an optimization model of agricultural production structure based on water footprints was developed. The utilization status of water resource for agriculture was evaluated with the agricultural water resources stress index (AWSI). And the scenario analysis of Jiaxing agricultural industrial structure adjustment was conducted. The results showed that the majority of agricultural water footprints of Jiaxing were green water footprints. The proportion of blue, green and grey water footprints in the total water footprint was 11.6%, 51.7% and 36.8%, respectively. The AWSI showed that there was a high pressure on agricultural water resources with the value of 0.45. Under the three target scenarios of water-saving, balanced use and development, the agricultural water footprint and economic benefits could be optimized by industrial structure adjustment. The AWSI of these scenarios reduced by 4.54%, 3.89% and 0.74%, respectively, alleviating the regional water resources pressure. These results showed that the adjustment of agricultural industrial structure based on water footprint effectively improved the efficiency of intensive water use and reduced the regional water pressure. The research can provide reference for agricultural water resources management decision-making.

Key words: agricultural water footprint    industry adjustment    multi-objective optimization model
收稿日期: 2021-05-31 出版日期: 2022-09-14
CLC:  X 321  
基金资助: 国家重大科技专项(2017ZX07206-001);浙江省基础公益研究计划项目(LGF19E090001)
通讯作者: 王飞儿     E-mail: 21714054@zju.edu.cn;wangfeier@zju.edu.cn
作者简介: 秦智雅(1995—),ORCID:https://orcid.org/0000-0001-9332-9611,女,硕士研究生,主要从事环境规划管理研究,E-mail: 21714054@zju.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
秦智雅
俞洁
孙国金
王飞儿

引用本文:

秦智雅,俞洁,孙国金,王飞儿. 基于水足迹的嘉兴市农业产业结构优化模型[J]. 浙江大学学报(理学版), 2022, 49(5): 613-622.

Zhiya QIN,Jie YU,Guojin SUN,Feier WANG. Optimization model of agricultural industrial structure in Jiaxing city based on water footprint. Journal of Zhejiang University (Science Edition), 2022, 49(5): 613-622.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.05.013        https://www.zjujournals.com/sci/CN/Y2022/V49/I5/613

作物种类稻谷小麦大麦玉米豆类薯类油菜籽蔬菜水果(葡萄)
单位质量灰水足迹/(m3·t-121529213128819973467132170
表1  嘉兴市主要农作物单位质量灰水足迹
图1  农作物单位质量水足迹计算流程
产品

单位质量蓝水

足迹/(m3·t-1

单位质量绿水

足迹/(m3·t-1

猪肉2703 430
羊肉3804 820
禽肉3003 200
禽蛋7707 880
淡水养殖水产4004 600
表2  嘉兴市主要畜牧渔产品单位质量蓝水、绿水足迹
目标节水型均衡型发展型
判断矩阵

权重

wi

判断矩阵

权重

wi

判断矩阵

权重

wi

C1C2C3C1C2C3C1C2C3
C11130.491110.33110.330.03
C21130.491110.33110.330.03
C30.330.3310.021110.333310.93
表3  3种典型情景的判断矩阵和权重
图2  2017年嘉兴市农业水足迹构成

调控

情景

蓝水足迹

变化率/%

灰水足迹

变化率/%

产值

变化率/%

AWSI/%
节水型-6.13-4.420-4.54
均衡型-5.97-3.621.73-3.89
发展型-4.3604.10-0.74
表4  3种调控情景的目标结果变化
图3  嘉兴市农业结构调整方案变化情况
地区蓝水足迹变化率/%灰水足迹变化率/%产值变化率/%
节水型均衡型发展型节水型节水型发展型节水型均衡型发展型
南湖区-4.95-4.76-4.69-1.43-0.690.000.001.742.55
秀洲区-5.09-4.95-4.27-3.06-2.090.000.001.833.21
嘉善县-5.77-5.73-4.74-3.22-3.060.000.000.402.73
平湖市-5.24-5.21-3.39-2.53-1.910.000.000.782.18
海盐县-6.39-6.31-3.93-6.38-5.680.000.001.284.95
海宁市-6.36-6.22-3.33-5.78-4.560.000.002.285.44
桐乡市-8.78-8.29-6.11-6.74-5.720.000.003.036.38
表5  嘉兴市各地区调控目标变化率
1 PICKERING K T, OWEN L A. An Introduction to Global Environmental Issues[M]. London: Routledge, 1994.
2 MANCOSU N, SNYDER R L, KYRIAKAKIS G, et al. Water scarcity and future challenges for food production[J]. Water, 2015, 7(3): 975-992. DOI:10.3390/w7030975
doi: 10.3390/w7030975
3 KANG S Z, HAO X M, DU T S, et al. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice[J]. Agricultural Water Management, 2017, 179: 5-17. DOI:10.1016/j.agwat.2016.05.007
doi: 10.1016/j.agwat.2016.05.007
4 黄瑜, 刘佩诗, 甘曼琴, 等. GIS技术在农业面源污染研究中的应用[J]. 中国土壤与肥料, 2020(6): 279-285. DOI:10.11838/sfsc.1673-6257.19487
HUANG Y, LIU P S, GAN M Q, et al. Application of GIS technology in research of agricultural non-point source pollution[J]. Soils and Fertilizers Sciences in China, 2020(6): 279-285. DOI:10. 11838/sfsc.1673-6257.19487
doi: 10. 11838/sfsc.1673-6257.19487
5 王振华, 陈学庚, 郑旭荣, 等. 关于我国大田滴灌未来发展的思考[J]. 干旱地区农业研究, 2020, 38(4): 1-9, 38. DOI:10.7606/j.issn.1000-7601.2020.04.01
WANG Z H, CHEN X G, ZHENG X R, et al. Discussion of the future development of field drip irrigation in China[J]. Agricultural Research in the Arid Areas, 2020, 38(4): 1-9, 38. DOI:10.7606/j.issn.1000-7601.2020.04.01
doi: 10.7606/j.issn.1000-7601.2020.04.01
6 江景涛, 杨然兵, 鲍余峰, 等. 水肥一体化技术的研究进展与发展趋势[J]. 农机化研究, 2021, 43(5): 1-9. DOI:10.3969/j.issn.1003-188X.2021.05.002
JIANG J T, YANG R B, BAO Y F, et al. Research progress and development trend of water and fertilizer integration[J]. Journal of Agricultural Mechanization Research, 2021, 43(5): 1-9. DOI:10.3969/j.issn. 1003-188X.2021.05.002
doi: 10.3969/j.issn. 1003-188X.2021.05.002
7 陈瑶. 区域农业水资源平衡分析与农业节水[J]. 节水灌溉, 2017(10): 46-51. DOI:10.3969/j.issn.1007-4929.2017.10.012
CHEN Y. Analysis of agricultural water-saving and supply-demand balance of regional agricultural water resources[J]. Water Saving Irrigation, 2017(10): 46-51. DOI:10.3969/j.issn.1007-4929.2017.10.012
doi: 10.3969/j.issn.1007-4929.2017.10.012
8 蔺雪芹, 方创琳. 水资源硬约束下的武威城市化过程与节水型城市建设[J]. 干旱区资源与环境, 2009, 23(1): 117-124. DOI:10.13448/j.cnki.jalre.2009. 01.016
LIN X Q, FANG C L. The process of urbanization in Wuwei city with water resource hard constraint and the approach to establishing water-saving city[J]. Journal of Arid Land Resources and Environment, 2009, 23(1): 117-124. DOI:10.13448/j.cnki.jalre. 2009.01.016
doi: 10.13448/j.cnki.jalre. 2009.01.016
9 张云苹, 徐征和, 王昕, 等. 基于大系统分解协调法的沾化县典型农业区水资源优化配置[J]. 中国农村水利水电, 2016(3): 60-63. DOI:10.3969/j.issn. 1007-2284.2016.03.015
ZHANG Y P, XU Z H, WANG X, et al. Research on the optimal allocation of the typical area of Zhanhua based on large system decomposition coordination[J]. China Rural Water and Hydropower, 2016(3): 60-63. DOI:10.3969/j.issn.1007-2284.2016.03.015
doi: 10.3969/j.issn.1007-2284.2016.03.015
10 HOEKSTRA A Y, HUNG P Q. Virtual Water Trade:A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade[R]. Delft: UNESCO-IHE, 2002.
11 徐长春, 陈阜. “水足迹”及其对中国农业水资源管理的启示[J]. 世界农业, 2015(11): 38-44. DOI:10.13856/j.cn11-1097/s.2015.11.008
XU C C, CHEN F. "Water footprint" and its implications for China's agricultural water resources management[J]. World Agriculture, 2015(11): 38-44. DOI:10.13856/j.cn11-1097/s.2015.11.008
doi: 10.13856/j.cn11-1097/s.2015.11.008
12 侯庆丰. 基于水足迹的甘肃省农作物种植结构优化分析[J]. 中国沙漠, 2013, 33(6): 1921-1927. DOI:10.7522/j.issn.1000-694X.2013.00272
HOU Q F. Crop planting structure optimization analysis based on water footprint in Gansu province[J]. Journal of Desert Research, 2013, 33(6): 1921-1927. DOI:10. 7522/j.issn.1000-694X.2013.00272
doi: 10. 7522/j.issn.1000-694X.2013.00272
13 SU X L, LI J F, SINGH V P. Optimal allocation of agricultural water resources based on virtual water subdivision in Shiyang River Basin[J]. Water Resources Management, 2014, 28(8): 2243-2257. DOI:10.1007/s11269-014-0611-5
doi: 10.1007/s11269-014-0611-5
14 张杰, 邓晓军, 邹婷婷, 等. 基于虚拟水的广西农业产业结构优化[J]. 节水灌溉, 2017(7): 61-65. DOI:10.3969/j.issn.1007-4929.2017.07.013
ZHANG J, DENG X J, ZOU T T, et al. Agricultural industrial structure optimization based on virtual water in Guangxi[J]. Water Saving Irrigation, 2017(7): 61-65. DOI:10.3969/j.issn. 1007-4929.2017.07.013
doi: 10.3969/j.issn. 1007-4929.2017.07.013
15 MALI S S, SINGH D K, SARANGI A, et al. Crop water footprints with special focus on response formulation: The case of Gomti River Basin (India)[J]. Environmental Earth Sciences, 2017, 76(23): 1-13. DOI:10.1007/s12665-017-7121-8
doi: 10.1007/s12665-017-7121-8
16 庄犁, 周慧平, 常维娜, 等. 嘉兴市水污染源解析及等标污染负荷评价[J]. 环保科技, 2015, 21(2): 15-18, 39. DOI:10.3969/j.issn.1674-0254.2015.02.003
ZHUANG L, ZHOU H P, CHANG W N, et al. Sources apportionment and equal standard pollution load assessment of water pollution in Jiaxing city[J]. Environmental Protection and Technology, 2015, 21(2): 15-18, 39. DOI:10.3969/j.issn.1674-0254. 2015.02.003
doi: 10.3969/j.issn.1674-0254. 2015.02.003
17 HOEKSTRA A Y, CHAPAGAIN A K, ALDAYA M M, et al. The Water Footprint Assessment Manual: Setting the Global Standard[M]. London: Routledge, 2011.
18 CAI B M, LIU B B, ZHANG B. Evolution of Chinese urban household's water footprint[J]. Journal of Cleaner Production, 2019, 208: 1-10. DOI:10.1016/j.jclepro.2018.10.074
doi: 10.1016/j.jclepro.2018.10.074
19 MEKONNEN M M, HOEKSTRA A Y. The green, blue and grey water footprint of crops and derived crop products[J]. Hydrology and Earth System Sciences, 2011, 15(5):1577-1600. DOI:10.5194/hess-15-1577-2011
doi: 10.5194/hess-15-1577-2011
20 CHAPAGAIN A K, HOEKSTRA A Y . Virtual Water Flows between Nations in Relation to Trade in Livestock and Livestock Products, Value of Water Research Report Series No.13[R]. Delft: UNESCO-IHE, 2003.
21 孙才志, 张蕾. 中国农畜产品虚拟水区域分布空间差异[J]. 经济地理, 2009, 29(5): 806-811. DOI:10. 15957/j.cnki.jjdl.2009.05.016
SUN C Z, ZHANG L. Research on the primary crop-livestock product virtual water regional disparities in China[J]. Economic Geography, 2009, 29(5): 806-811. DOI:10.15957/j.cnki.jjdl.2009.05.016
doi: 10.15957/j.cnki.jjdl.2009.05.016
22 赵锐, 李红, 贺华玲, 等. 乐山市动物类产品水足迹测算分析[J]. 生态科学, 2017, 36(2): 93-99. DOI:10.14108/j.cnki.1008-8873.2017.02.014
ZHAO R, LI H, HE H L, et al. Assessment of water footprint of animal products in Leshan city[J]. Ecological Science, 2017, 36(2): 93-99. DOI:10. 14108/j.cnki.1008-8873.2017.02.014
doi: 10. 14108/j.cnki.1008-8873.2017.02.014
23 MEKONNEN M M, HOEKSTRA A Y . Green The, Blue and Grey Water Footprint of Farm Animals and Animal Products, Value of Water Research Report Series No.48[R]. Delft: UNESCO-IHE, 2010.
24 李萍萍, 刘继展. 太湖流域农业结构多目标优化设计[J]. 农业工程学报, 2009, 25(10): 198-203. DOI:10.3969/j.issn.1002-6819.2009.10.036
LI P P, LIU J Z. Multi-objective optimization of agricultural structure in Taihu Lake Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(10): 198-203. DOI:10.3969/j.issn.1002-6819.2009.10.036
doi: 10.3969/j.issn.1002-6819.2009.10.036
25 RASKIN P, GLEICK P, KIRSHEN P, et al. Water Futures: Assessment of Long-Range Patterns and Prospects[R]. Stockholm: Stockholm Environment Institute, 1997.
26 GE L Q, XIE G D, LI S M, et al. The analysis of water footprint of production and water stress in China[J]. Journal of Resources and Ecology, 2016, 7(5): 334-341. DOI:10.5814/j.issn.1674-764x.2016.05.003
doi: 10.5814/j.issn.1674-764x.2016.05.003
27 CAO X C, WU M Y, GUO X P, et al. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework[J]. Science of The Total Environment, 2017, 609: 587-597. DOI:10.1016/j.scitotenv.2017. 07.191
doi: 10.1016/j.scitotenv.2017. 07.191
28 REN C F, LI Z H, ZHANG H B. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties[J]. Journal of Cleaner Production, 2019, 210: 12-24. DOI:10. 1016/j.jclepro.2018.10.348
doi: 10. 1016/j.jclepro.2018.10.348
29 蒋霄阳. 浙江省近十年鲜食玉米发展状况研究[D]. 杭州: 浙江大学, 2018.
JIANG X Y. Research on the Development of Fresh Corn in Zhejiang Province in the Last Ten Years[D]. Hangzhou: Zhejiang University, 2018.
30 吴剑. 嘉兴地区优势水果产业现状及发展对策[J]. 现代农业科技, 2014(20): 294-295. DOI:10.3969/j.issn.1007-5739.2014.20.171
WU J. Current situation and development countermeasures of superior fruit industry in Jiaxing area[J]. Modern Agricultural Science and Technology, 2014(20): 294-295. DOI:10.3969/j.issn.1007-5739.2014.20.171
doi: 10.3969/j.issn.1007-5739.2014.20.171
31 王建群, 谭忠成, 陆宝宏. 水资源系统优化方法[M]. 南京: 河海大学出版社, 2016: 143-144.
WANG J Q, TANG Z C, LU B H. Water System Optimization Method[M]. Nanjing: Hehai University Press, 2016: 143-144.
32 ZHAO D D, TANG Y, LIU J G, et al. Water footprint of Jing-Jin-Ji urban agglomeration in China[J]. Journal of Cleaner Production, 2017, 167: 919-928. DOI:10. 1016/j.jclepro.2017.07.012
doi: 10. 1016/j.jclepro.2017.07.012
33 黄思. 引导与主导: 农业产业结构调整的政府逻辑及其影响[J]. 重庆社会科学, 2020(4): 5-14. DOI:10. 19631/j.cnki.css.2020.004.001
HUANG S. Guiding and leading: Governmental logic and its influence of agricultural industry structure adjustment[J]. Chongqing Social Sciences, 2020(4): 5-14. DOI:10.19631/j.cnki.css.2020.004.001
doi: 10.19631/j.cnki.css.2020.004.001
No related articles found!