Please wait a minute...
浙江大学学报(理学版)  2022, Vol. 49 Issue (5): 606-612    DOI: 10.3785/j.issn.1008-9497.2022.05.012
地球科学     
基于MODIS数据的山西省PM2.5浓度估算研究
张仲伍1(),魏凯艳1,孙九林1,2,赵雪倩1,何雪宁1
1.山西师范大学 地理科学学院,山西 临汾 041000
2.中国科学院 地理科学与资源研究所,北京 100101
Estimation of PM2.5 concentration based on MODIS data in Shanxi province
Zhongwu ZHANG1(),Kaiyan WEI1,Jiulin SUN1,2,Xueqian ZHAO1,Xuening HE1
1.School of Geography Science,Shanxi Normal University,Linfen 041000,Shanxi Province,China
2.Institute of Geographical Sciences and Resources,Chinese Academy of Sciences,Beijing 100101,China
 全文: PDF(1508 KB)   HTML( 4 )
摘要:

通过ENVI软件对美国国家航空航天局(NASA)发布的MODIS L1B数据进行几何校正、波段合成、重采样、构建查找表等操作,反演了山西省2020年3—8月气溶胶光学厚度(aerosol optical depth,AOD),用大气气溶胶产品MOD04_3K验证AOD的反演精度,对反演结果中的高度进行订正,分析了山西省AOD时空分布特征,在此基础上建立了AOD与PM2.5浓度的回归模型,并通过模型验证估算误差。结果表明:(1)MODIS L1B反演结果具有较高的精度,与大气气溶胶产品MOD04_3K数据的相关系数为0.934。(2)在时间分布上,AOD存在明显的季节性差异,夏季AOD均值远高于春季;在空间分布上,AOD呈现由北向南逐渐增加的趋势,高值主要出现在山西省南部的临汾市和运城市。(3)整体、春季、夏季3类回归模型的平均相对误差分别为25.91%,27.62%,23.87%,表明模型的拟合效果较好,可较为准确地估算PM2.5浓度。

关键词: PM2.5MODIS山西省气溶胶光学厚度(AOD)暗像元法    
Abstract:

The aerosol optical depth (AOD) of Shanxi province from March to August 2020 was retrieved by ENVI software through the steps of geometric correction, band synthesis, resampling and look-up table construction based on MODIS L1B data released by NASA, and the accuracy of AOD inversion was verified by MOD04_3K aerosol product. The inversion results were highly revised and the spatial and temporal distribution characteristics of AOD in Shanxi province were analyzed. On this basis, the regression simulation equation of AOD and PM2.5 concentration was established, and the model was tested to analyze the estimation error. The results show that: (1) MODIS L1B inversion has high accuracy, and the correlation coefficient between MODIS L1B inversion and MOD04_3K aerosol product data is 0.934; (2) The temporal distribution of AOD has obvious seasonal difference, and the mean value of AOD in summer is much higher than that in spring. The spatial distribution of AOD gradually increased from north to south, with high values mainly in Linfen and Yuncheng areas in the south of Shanxi province. (3) The regression equations of AOD and PM2.5 concentration were established by using three models of whole, spring and summer, and the average relative errors were 25.91%, 27.62% and 23.87%, respectively, indicating that the model has good fitting performance and can accurately estimate PM2.5 concentration.

Key words: PM2.5    MODIS    Shanxi province    aerosol optical depth (AOD)    dense dark vegetation
收稿日期: 2021-07-19 出版日期: 2022-09-14
CLC:  P 49  
基金资助: 山西省哲学社会科学项目(2019B201)
作者简介: 张仲伍(1969—),ORCID:https://orcid.org/0000-0002-6855-9236,男,博士,副教授,主要从事区域开发与城市规划研究,E-mail:zhangzhongwu69@163.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张仲伍
魏凯艳
孙九林
赵雪倩
何雪宁

引用本文:

张仲伍, 魏凯艳, 孙九林, 赵雪倩, 何雪宁. 基于MODIS数据的山西省PM2.5浓度估算研究[J]. 浙江大学学报(理学版), 2022, 49(5): 606-612.

Zhongwu ZHANG, Kaiyan WEI, Jiulin SUN, Xueqian ZHAO, Xuening HE. Estimation of PM2.5 concentration based on MODIS data in Shanxi province. Journal of Zhejiang University (Science Edition), 2022, 49(5): 606-612.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2022.05.012        https://www.zjujournals.com/sci/CN/Y2022/V49/I5/606

图1  研究区内PM2.5监测站点分布情况
监测站点编码监测站点名称经度/°E纬度/°N
1721A果树场113.381 940.109 7
1722A红旗广场113.285 840.095 8
1723A云冈宾馆113.299 440.075 8
1724A大同大学113.344 440.091 7
1725A安家小村113.266 140.126 9
1726A教育学院113.271 140.084 4
2923A供排水公司113.280 340.111 4
2160A自来水公司112.850 035.505 1
2161A白云商贸112.835 035.493 4
2162A市环保局112.856 435.488 3
2163A技术学院112.866 435.489 4
2164A泽州一中112.825 235.481 3
2165A白马寺112.845 335.546 0
表1  山西省PM2.5监测站点地理位置(部分)
图2  春季和夏季AOD分布
图3  1 km分辨率AOD与MOD04_3K数据散点图
模型类别函数类型拟合方程R2
整体模型线性Y=16.568+68.599X0.579
对数Y=53.687+8.318 lnX0.251
一元二次Y=20.381+41.584X+26.577X20.594
一元三次Y=17.004+83.237X-64.829X2+48.621X30.604
指数Y=17.584+1.734 X0.437
乘幂Y=50.353+X0.2760.326
春季模型线性Y=16.710+65.486X0.547
对数Y=53.276+7.459 lnX0.215
一元二次Y=22.377+21.244X+42.108X20.585
一元三次Y=18.989+68.242X-56.089X2+49.435X30.596
指数Y=17.076+1.638 X0.431
乘幂Y=47.084+X0.2390.279
夏季模型线性Y=16.864+74.317X0.638
对数Y=56.976+10.983 lnX0.341
一元二次Y=17.289+71.562X+2.960X20.637
一元三次Y=17.509+69.051X+9.201X2-3.860X30.636
指数Y=19.533+1.817 X0.472
乘幂Y=57.643+X0.3360.395
表2  AOD与PM2.5浓度的模拟模型
  图4 3 类模型拟合结果
1 ZANOBETTI A, DOMINICI F, WANG Y, et al. A national case-crossover analysis of the short-term effect of PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders[J]. Environmental Health, 2014, 13(1): 38. DOI:10. 1186/1476-069X-13-38
doi: 10. 1186/1476-069X-13-38
2 郑俊, 杨志强, 张凯南, 等. MODIS气溶胶光学厚度反演的西安市颗粒物浓度研究[J]. 测绘工程, 2018, 27(12): 19-23, 30. DOI:10.19349/j.cnki.issn1006-7949.2018.12.005
ZHENG J, YANG Z Q, ZHANG K N, et al. Inversion of PM concentration in Xi'an based on MODIS aerosol optical depth[J]. Engineering of Surveying and Mapping, 2018, 27(12): 19-23, 30. DOI:10.19349/j.cnki.issn1006-7949.2018.12.005
doi: 10.19349/j.cnki.issn1006-7949.2018.12.005
3 李诺, 刘战伟, 卫林勇, 等. 基于MODIS数据的郑州市气溶胶时空变化特征分析[J]. 气象与环境科学, 2018, 41(2): 30-36. DOI:10.16765/j.cnki.1673-7148.2018.02.005
LI N, LIU Z W, WEI L Y, et al. Analysis of spatial and temporal characteristics of aerosol in Zhengzhou city based on MODIS data[J]. Meteorological and Environmental Sciences, 2018, 41(2): 30-36. DOI:10.16765/j.cnki.1673-7148.2018.02.005
doi: 10.16765/j.cnki.1673-7148.2018.02.005
4 赵晓亮, 孙杰, 冯银厂, 等. 阜新市MODIS AOD与大气PM2.5浓度相关性研究[J]. 地球与环境, 2017, 45(3): 283-289. DOI:10.14050/j.cnki.1672-9250. 2017.03.005
ZHAO X L, SUN J, FENG Y C, et al. A study on correlation between MODIS AOD and PM2.5 in Fuxin city, China[J]. Earth and Environmental, 2017, 45(3): 283-289. DOI:10.14050/j.cnki.1672-9250. 2017.03.005
doi: 10.14050/j.cnki.1672-9250. 2017.03.005
5 杨颖川, 葛宝珠, 郝赛宇, 等. 基于能见度及AOD数据的北京市PM2.5浓度的反演[J]. 气候与环境研究, 2020, 25(5): 521-530. DOI:10.3878/j.issn.1006-9585. 2019.19114
YANG Y C, GE B Z, HAO S Y, et al. Inversion of PM2.5 concentration in Beijing based on visibility and AOD data[J]. Climatic and Environmental Research, 2020, 25(5): 521-530. DOI:10.3878/j.issn.1006-9585.2019.19114
doi: 10.3878/j.issn.1006-9585.2019.19114
6 GUO J, XIA F, ZHANG Y, et al. Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: Implications for PM2.5 remote sensing[J]. Environmental Pollution, 2017, 221: 94-104. DOI:10.1016/j.envpol.2016.11.043
doi: 10.1016/j.envpol.2016.11.043
7 陈美娟, 刘静, 刘利民, 等. 基于MODIS数据的沈阳市PM2.5反演研究[J]. 环境科学与技术, 2016, 39(12): 87-93. DOI:10.3969/j.issn.1003-6504. 2016.12.015
CHEN M J, LIU J, LIU L M, et al. Inversion of PM2.5 with MODIS data in Shenyang[J]. Environmental Science and Technology, 2016, 39(12): 87-93. DOI:10.3969/j.issn.1003-6504. 2016.12.015
doi: 10.3969/j.issn.1003-6504. 2016.12.015
8 KOELEMEIJER R B A, HOMAN C D, MATTHIJSEN J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe[J]. Atmospheric Environment, 2006, 40(27): 5304-5315. DOI:10. 1016/j.atmosenv.2006.04.044
doi: 10. 1016/j.atmosenv.2006.04.044
9 陈璇. 杭州湾PM2.5遥感估算及其与地表特征关系研究[D]. 上海: 上海师范大学, 2018.
CHEN X. Remote Sensing Estimation of PM2.5 in Hangzhou Bay and Its Relationship with Surface Characteristics[D]. Shanghai: Shanghai Normal University, 2018.
10 陈伟. 定量遥感在PM2.5质量浓度估算中的应用研究: 以江苏省为例[D]. 成都: 成都理工大学, 2016.
CHEN W. Research on the Estimation of PM2.5 Mass Concentration with the Quantitative Remote Sensing in Jiangsu Province[D]. Chengdu: Chengdu University of Technology, 2016.
11 杨东旭, 韦晶, 钟永德. 利用MODIS卫星资料反演北京地区气溶胶光学厚度[J]. 光谱学与光谱分析, 2018, 38(11): 3464-3469. DOI:10.3964/j.issn.1000-0593(2018)11-3464-06
YANG D X, WEI J, ZHONG Y D. Aerosol optical depth retrieval over Beijing using MODIS satellite images[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3464-3469. DOI:10.3964/j.issn.1000-0593(2018)11-3464-06
doi: 10.3964/j.issn.1000-0593(2018)11-3464-06
12 刘林钰, 张永军, 李彦胜, 等. 基于深度学习的华东地区PM2.5浓度遥感反演[J]. 环境科学, 2020, 41(4): 1513-1519. DOI:10.13227/j.hjkx.201909209
LIU L Y, ZHANG Y J, LI Y S, et al. PM2.5 inversion using remote sensing data in eastern China based on deep learning[J]. Environmental Science, 2020, 41(4): 1513-1519. DOI:10.13227/j.hjkx. 201909209
doi: 10.13227/j.hjkx. 201909209
13 POPE C A, THUN M J, NAMBOODIRI M M, et al. Particulate air pollition as a predictor of mortality in a prospective study of US adults[J]. American Journal of Respiratory and Critical Care Medicine, 1995, 151(3): 669-674. DOI:10.1164/ajrccm/151.3_Pt_1.669
doi: 10.1164/ajrccm/151.3_Pt_1.669
14 张世乔, 江洪, 王祎鑫, 等. 京津唐地区PM2.5遥感估算与区域传输[J]. 遥感信息, 2017, 32(4): 11-23. DOI:10.3969/j.issn.1000-3177.2017.04.003
ZHANG S Q, JIANG H, WANG Y X, et al. Ground-level PM2.5 estimation and regional transport in Beijing-Tianjin-Tangshan region using satellite remote sensing technique[J]. Remote Sensing Information, 2017, 32(4): 11-23. DOI:10.3969/j.issn.1000-3177.2017.04.003
doi: 10.3969/j.issn.1000-3177.2017.04.003
15 王细元. 基于遥感与地面监测数据的上海市PM2.5浓度时空变化研究[D]. 上海: 华东师范大学, 2019. doi:10.20319/lijshls.2015.s11.139150
WANG X Y. Study on Spatio-Temporal Variation of PM2.5 Concentration based on Satellite and Ground-Based Data over Shanghai[D]. Shanghai: East China Normal University, 2019. doi:10.20319/lijshls.2015.s11.139150
doi: 10.20319/lijshls.2015.s11.139150
16 YOU W, ZANG Z L, PAN X B, et al. Estimating PM2.5 in Xi'an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models[J]. Science of the Total Environment, 2015, 505: 1156-1165. DOI:10.1016/j.scitotenv. 2014.11.024
doi: 10.1016/j.scitotenv. 2014.11.024
17 CLARENS M, BEMET N, DELGENES J P, et al. Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei [J]. FEMS Microbiology Ecology, 1998, 25(3): 271-276. doi:10.1111/j.1574-6941.1998.tb00479.x
doi: 10.1111/j.1574-6941.1998.tb00479.x
18 黄文喜. 基于遥感与地面监测数据的PM2.5定量反演研究[D]. 武汉: 中国地质大学,2019.
HUANG W X. PM2.5 Quantitative Retrieval based on the Remote Sensing and Ground-Based Air Quality Measurement Data[D]. Wuhan: China University of Geosciences, 2019.
19 吕明明. 基于MODIS数据的PM2.5浓度遥感反演: 以京津冀城市群为例[D]. 北京: 中国地质大学, 2017.
LYU M M. The Remote Sensing Retrieval of PM2.5 based on MODIS Data: A Case Study of Beijing-Tianjin-Hebei Region[D]. Beijing: China University of Geosciences, 2017.
20 LIN C Q, LI Y, YUAN Z B, et al. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5 [J]. Remote Sensing of Environment, 2015, 156: 117-128. DOI:10.1016/j.rse.2014.09.015
doi: 10.1016/j.rse.2014.09.015
21 LAU K H, LI C C, MAO J T, et al. A new way of using MODIS data to study air pollution over Hong Kong and the Pearl River Delta[J]. Proceedings of the SPIE, 2003, 20(2): 105-114. DOI:10.1117/12. 466766
doi: 10.1117/12. 466766
22 KAUFMAN Y J, WALD A E, REMER L A, et al. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 35(5): 1286-1298. DOI:10.1109/36. 628795
doi: 10.1109/36. 628795
23 刘欢. 重庆市主城区冬季大气细颗粒物(PM2.5)质量浓度的遥感估算模型研究[D]. 重庆: 重庆师范大学, 2016. doi:10.17520/biods.2015236
LIU H. Remote Sensing Estimation Model of Atmospheric Fine Particulate Matter (PM2.5) Mass Concentration in the Main City of Chongqing City[D]. Chongqing: Chongqing Normal University, 2016. doi:10.17520/biods.2015236
doi: 10.17520/biods.2015236
24 WANG Z F, CHEN L F, TAO J H, et al. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sensing of Environment, 2010, 114(1): 50-63. DOI:10.1016/j.rse.2009.08.009
doi: 10.1016/j.rse.2009.08.009
25 MORDUKHOVICH I, COULL B, KLOOG I, et al. Exposure to sub-chronic and long-term particulate air pollution and heart rate variability in an elderly cohort: The normative aging study[J]. Environmental Health, 2015, 14: 87. DOI:10.1186/s12940-015-0074-z
doi: 10.1186/s12940-015-0074-z
26 李志鹏, 陈健. 基于GOCI卫星的大气细颗粒物PM2.5的遥感反演及其时空分布规律研究[J]. 遥感技术与应用, 2020, 35(1): 163-173. DOI:10.11873/j.issn.1004-0323.2020.1.0163
LI Z P, CHEN J. Remote sensing retrieval of atmospheric fine particle PM2.5 based on GOCI satellite and its temporal and spatial distribution[J]. Remote Sensing Technology and Application, 2020, 35(1): 163-173. DOI:10.11873/j.issn.1004-0323.2020.1.0163
doi: 10.11873/j.issn.1004-0323.2020.1.0163
27 TIAN J, CHEN D M. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements[J]. Remote Sensing of Environment, 2010, 114(2): 221-229. DOI:10. 1016/j.rse.2009.09.011
doi: 10. 1016/j.rse.2009.09.011
[1] 傅颖颖, 张丰, 杜震洪, 刘仁义. 融合图卷积神经网络和注意力机制的PM2.5小时浓度多步预测[J]. 浙江大学学报(理学版), 2021, 48(1): 74-83.
[2] 汪鹏, 熊春, 吴育杰, 李臻, 郭平, 陈雪, 俞绍才, 王志彬, 刘维屏. 杭州市2017年冬季一次重灰霾过程中PM2.5水溶性离子特征、来源及成因分析[J]. 浙江大学学报(理学版), 2019, 46(3): 345-353.
[3] 黄婕, 张丰, 杜震洪, 刘仁义, 曹晓裴. 基于RNN-CNN集成深度学习模型的PM2.5小时浓度预测[J]. 浙江大学学报(理学版), 2019, 46(3): 370-379.
[4] 陶志华, 谢松青, 何微娜, 余彬彬, 方铖, 葛琳琳, 李伟, 王俏丽, 王向前. 台州市不同功能区环境空气PM2.5的污染特征研究[J]. 浙江大学学报(理学版), 2017, 44(4): 464-471.
[5] 葛琳琳, 郑元铸, 涂圣锋, 朱京科, 王俏丽, 王向前, 李素静, 李伟. 温州市PM2.5中水溶性离子污染特征及来源分析[J]. 浙江大学学报(理学版), 2017, 44(1): 112-120.