Please wait a minute...
浙江大学学报(理学版)  2021, Vol. 48 Issue (3): 338-348    DOI: 10.3785/j.issn.1008-9497.2021.03.010
地球科学     
钾长石热释光热年代学——一种约束岩石剥露历史的新方法
刘婷, 杨蓉
浙江大学 地球科学学院,浙江 杭州 310027
K-feldspar thermoluminescence thermochronometry: A new method to constrain exhumation history
LIU Ting, YANG Rong
School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
 全文: PDF(7226 KB)   HTML  
摘要: 岩石中的自然热释光强度是辐射诱发的热释光生长与衰退共同作用的结果。热释光的衰退包括热衰退和异常衰退两部分,其中,热衰退与温度有关。在岩石从地下向地表剥露过程中,随温度的降低热衰退减小,从而使岩石中的自然热释光强度增强,利用此现象可从热释光中得到岩石的冷却历史。钾长石热释光的封闭温度为40 ℃~80 ℃,低于其他低温热年代学方法的封闭温度,因此钾长石热释光热年代学方法能约束浅地表的剥露。同时,由于该方法具有更短的时间尺度和更高的精度,可精确描述剥露速率随时间的变化关系,因此可更好地揭示构造、侵蚀、气候三者间的关系,尤其是揭示第四纪以来这三者间的关系。最后,介绍了钾长石热释光热年代学在东喜马拉雅构造结以北中的应用,证实100 ka以来东构造结以北存在快速剥露,其可能是构造结向北扩张的结果。
关键词: 钾长石热释光热年代学剥露历史东喜马拉雅构造结    
Abstract: Thermoluminescence thermochronometry of K-feldspar can be used as a new thermochronometer to constrain exhumation history of rocks over short-term timescale.This theory is based on that natural thermoluminescence level in buried rocks is a dynamic equilibrium between radiation-induced thermoluminescence growth and decay.There are two kinds of decay modes in thermoluminescence: thermal decay and athermal decay.The thermal decay is temperature-dependent and proportional to ambient temperature.The thermal decay decreases with geotherm decreasing when rocks exhume from deep in the crust to the surface,leading to the increase of thermoluminescence level in rocks.This phenomenon can be analyzed and used to constrain the cooling history of rocks.Lock temperature of this new method which is related to closure temperature of thermochronometry is between 40 ℃-80 ℃. Due to its low closure temperature,it can be used to constrain exhumation near the earth surface.Meanwhile,this method also has high resolution to constrain exhumation history over short timescale,thus it can be used to investigate the relationship among tectonic,erosion and climate,especially,in the quaternary.This paper introduces the application of this new method in the eastern Himalaya syntaxis.The results show that there is a period of rapid exhumation since 100 ka to the north of the syntaxis which may be caused by the northward expansion of the syntaxis.
Key words: thermoluminescence thermochronometry of K-feldspar    exhumation history    eastern Himalayan syntaxis
收稿日期: 2020-06-05 出版日期: 2021-05-20
CLC:  P 597  
基金资助: 国家自然科学基金资助项目 (41602210).
通讯作者: ORCID:https://orcid.org/0000-0003-1450-8916,E-mail:royang1985@zju.edu.cn.     E-mail: royang1985@zju.edu.cn
作者简介: 刘婷(1993—),ORCID:https://orcid.org/0000-0001-6398-2521,女,硕士研究生,主要从事低温热年代学研;
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘婷
杨蓉

引用本文:

刘婷, 杨蓉. 钾长石热释光热年代学——一种约束岩石剥露历史的新方法[J]. 浙江大学学报(理学版), 2021, 48(3): 338-348.

LIU Ting, YANG Rong. K-feldspar thermoluminescence thermochronometry: A new method to constrain exhumation history. Journal of Zhejiang University (Science Edition), 2021, 48(3): 338-348.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2021.03.010        https://www.zjujournals.com/sci/CN/Y2021/V48/I3/338

1 HERMAN F,KING G E.Luminescence thermochronometry:Investigating the link between mountain erosion,tectonics and climate[J]. Elements,2018,14(1):33-38. DOI:10.2138/gselements.14.1.33
2 KING G E,GURALNIK B,VALLA P G,et al.Trapped-charge thermochronometry and thermometry: A status review[J]. Chemical Geology,2016,446:3-17. DOI:10.1016/j.chemgeo. 2016.08.023
3 BISWAS R H,HERMAN F,KING G E,et al.Thermoluminescence of feldspar as a multi-thermochronometer to constrain the temporal variation of rock exhumation in the recent past[J]. Earth and Planetary Science Letters,2018,495:56-68. DOI:10.1016/j.epsl.2018.04.030
4 BROWN N D,RHODES E J. Thermoluminescence measurements of trap depth in alkali feldspars extracted from bedrock samples[J].Radiation Measurements,2017,96:53-61. DOI:10.1016/j.radmeas.2016.11.011
5 BROWN N D,RHODES E J,HARRISON T M.Using thermoluminescence signals from feldspars for low-temperature thermochronology[J]. Quaternary Geochronology,2017,42:31-41. DOI:10.1016/j.quageo.2017.07.006
6 GURALNIK B,LI B,JAIN M,et al.Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar[J]. Radiation Measurements,2015,81:224-231. DOI:10.1016/j.radmeas.2015.02.011
7 WINTLE A G,HUNTLEY D J.Thermo-luminescence dating of ocean sediments[J]. Canadian Journal of Earth Sciences,1980,17(3):348-360. DOI:10.1139/e80-034
8 WINTLE A G.Thermo-luminescence properties of fine-grain minerals in loess[J]. Soil Science,1982,134(3):164-170. DOI:10.1097/00010694-19820 9000-00003
9 李虎侯. 马兰黄土的热释光年龄[J]. 中国科学(B辑),1986,16(12):1309-1316. DOI:10.1111/j.1524-4725.1986.tb01072.x LI H H. Thermoluminescence age of Malan Loess[J].Science in China (Series B),1986,16(12):1309-1316. DOI:10.1111/j.1524-4725.1986.tb010 72.x
10 李虎侯,孙建中.用热释光年龄研究大同火山活动的时代[J]. 中国科学(B辑),1984,14(7):637-644. LI H H,SUN J Z.The age of volcanic activity in Datong studied by thermoluminescence dating[J].Science in China (Series B),1984,14(7):637-644.
11 李虎侯,曹王敏贤.从热释光到光释光[J]. 核技术,1995,18(8):450-453. LI H H,TSO W M Y. From thermolumineacence to optically stimulated luminescence [J].Nuclear Techniques,1995,18(8):450-453.
12 JOHNSON N M.Geothermometry from the thermoluminescence of contact metamorphosed limestone[J]. The Journal of Geology,1966,74(5):607-619.
13 TANG S L,LI S H.Low temperature thermochronology using thermoluminescence signals from K-feldspar[J]. Geochronometria,2017,44(1):112-120. DOI:10.1515/geochr-2015-0057
14 TANG S L,LI S H.Low temperature thermochronology using thermoluminescence signals from quartz[J]. Radiation Measurements,2015,81:92-97. DOI:10.1016/j.radmeas.2015.04.011
15 CHEN R,MCKEEVER S W S.Theory of Thermoluminescence and Related Phenomenon[M].Singapore:World Scientific,1997. DOI:10.1142/2781
16 李虎侯. 释光技术测定年龄的现况[J].第四纪研究,1997,17(3):248-257. LI H H.Aspect of luminescence dating[J].Quaternary Sciences,1997,17(3):248-257.
17 AITKEN M J.Thermoluminescence Dating[M].London:Academic Press,1985.
18 GURALNIK B,JAIN M,HERMAN F,et al.OSL thermochronometry of feldspar from the KTB borehole,Germany[J]. Earth and Planetary Science Letters,2015,423:232-243. DOI:10.1016/j.epsl. 2015.04.032
19 RANDALL J T,WILKINSON M H F.Phosphorescence and electron traps[J]. Proceedings of the Royal Society London Series A-Mathematical and Physical Sciences,1945,184(999):390-407.
20 GRÜN R,PACKMAN S C.Observations on the kinetics involved in the TL glow curves in quartz,K-feldspar and Na-feldspar mineral separates of sediments and their significance for dating studies[J].Radiation Measurements,1994,23(2/3):317-322. DOI:10.1016/1350-4487(94)90058-2
21 李虎侯,刘兆文,李东旭,等.释光断代技术研究[J].原子能科学技术,2008,42(z1):367-370. LI H H,LIU Z W,LI D X,et al.Investigation of luminescence dating technique[J]. Atomic Energy Science and Technology,2008,42(z1):367-370.
22 杨百瑞.热释光及其应用[J].物理通报,1995,11:367-370. YANG B R.Thermoluminescence and its application[J]. Physics Bulletin,1995,11:367-370.
23 DODSON M H.Closure temperature in cooling geochronological and petrological systems[J].Contributions to Mineralogy and Petrology,1973,40:259-274. DOI:10.1007/bf00373790
24 GURALNIK B,JAIN M,HERMAN F,et al.Effective closure temperature in leaky and/or saturating thermochronometers[J].Earth and Planetary Science Letters,2013,384:209-218. DOI:10.1016/j.epsl.2013.10.003
25 HUNTLEY D J.An explanation of the power-law decay of luminescence[J].Journal of Physics:Condensed Matter,2006,18(4):1359-1365. DOI:10.1088/0953-8984/18/4/020
26 KARS R H,WALLINGA J,COHEN K M. A new approach towards anomalous fading correction for feldspar IRSL dating-tests on samples in field saturation[J].Radiation Measurements,2008,43(2/6):786-790. DOI:10.1016/j.radmeas.2008.01.021
27 MURRAY A S,WINTLE A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J].Radiation Measurements,2000,32(1):57-73. DOI:10.1016/s1350-4487(99)00253-x
28 PAGONIS V,MORTHEKAI P,KITIS G. Kinetic analysis of thermoluminescence glow curves in feldspar:Evidence for a continuous distribution of energies[J]. Geochronometria,2014,41(2):168-177. DOI:10.2478/s13386-013-0148-z
29 MAY C,PARTRIDGE J.Thermoluminescent kinetics of alpha-irradiated alkali halides[J].The Journal of Chemical Physics,1964,40(5):1401-1409. DOI:10.1063/1.1725324
30 KITIS G,GOMEZ-ROS J M,TUYN J W N.Thermoluminescence glow-curve deconvolution functions for first,second and general orders of kinetics[J]. Journal of Physics D(Applied Physics),1999,31(19):2636.
31 WINTLE A G.Anomalous fading of thermo-luminescence in mineral samples[J]. Nature,1973,245(2451):143-144.
32 AUCLAIR M,LAMOTHE M,HUOT S.Measurement of anomalous fading for feldspar IRSL using SAR[J]. Radiation Measurements,2003,37(4/5):487-492.
33 VALLA P G,LOWICK S E,HERMAN F,et al.Exploring IRSL 50 fading variability in bedrock feldspars and implications for OSL thermochronometry[J]. Quaternary Geochronology,2016,36:55-66. DOI:10.1016/j.quageo.2016.08.004
34 KING G E,HERMAN F,LAMBERT R,et al. Multi-OSL thermochronometry of feldspar[J].Quaternary Geochronology,2016,33:76-87. DOI:10.1016/j.quageo.2016.01.004
35 BRAUN J,VAN DER BEEK P,VALLA P,et al.Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE[J].Tectonophysics,2012,524/525:1-28.
36 GALLAGHER K,CHARVIN K,NIELSEN S,et al.Markov Chain Monte Carlo (MCMC) sampling methods to determine optimal models,model resolution and model choice for Earth Science problems[J].Marine Petroleum Geology,2009,26(4):525-535. DOI:10.1016/j.marpetgeo.2009. 01.003
37 KING G E,HERMAN F,GURALNIK B. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry[J].Science,2016,353(3601):800-804.
38 BELL W T. Alpha dose attenuation in quartz grains for thermoluminescence dating[J].Ancient Thermoluminescence,1980,12:4-8.
39 BRENNAN B J. Beta doses to spherical grains[J].Radiation Measurements,2003,37:299-303. DOI:10.1016/s1350-4487(03)00011-8
40 DURCAN J A,KING G E,DULLER G A T.DRAC:Dose rate and age calculator for trapped charge dating[J]. Quaternary Geochronology,2015,28:54-61. DOI:10.1016/j.quageo.2015.03.012
41 AITKEN M J. Introduction to Optical Dating[M].Oxford:Oxford University Press,1998.
42 XU Z Q,JI S C,CAI Z H,et al.Kinematics and dynamics of the Namche Barwa syntaxis,eastern Himalaya:Constraints from deformation,fabrics and geochronology[J].Gondwana Research,2012,21(1):19-36. DOI:10.1016/j.gr.2011.06.010
43 DING L,ZHONG D L,YIN A,et al.Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and Planetary Science Letters,2001,192(3):423-438. DOI:10.1016/s0012-821x(01)00463-0
44 YANG RONG,HERMAN F,FELLIN M G,et al.Exhumation and topographic evolution of the Namche Barwa syntaxis,eastern Himalaya[J]. Tectonophysics,2018,722:43-52. DOI:10.1016/j.tecto.2017.10.026
45 SEWARD D,BURG J P. Growth of the Namche Barwa syntaxis and associated evolution of the Tsangpo Gorge:Constraints from structural and thermochronological data[J]. Tectonophysics,2008,451(1/4):282-289. DOI:10.1016/j.tecto.2007.11.057
46 许志琴,蔡志慧,张泽明,等.喜马拉雅东构造结——南迦巴瓦构造及组构运动学[J].岩石学报,2008,24(7):1463-1476. XU Z Q,CAI Z H,ZHANG Z M,et al. Tectonics and fabric kinematics of the Namche Barwa terrane,eastern Himalayan syntaxis[J].Acta PetrologicaSinica,2008,24(7):1463-1476.
47 ZEITLER P K,MELTZER A S,KOONS P O,et al.Erosion,Himalayan geodynamics,and the geomorphology of metamorphism[J]. The Geological Society of America,2001,11:4-9. DOI:10. 1130/1052-5173(2001)011<0004:ehgatg>2.0.co;2
48 ZEITLER P K,MELTZER A S,BROWN L,et al.Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block,Tibet[J]. The Geological Society of America,2014,507(2):23-58.
49 雷永良,钟大赉,季建清,等.东喜马拉雅构造结更新世两期抬升-剥露事件的裂变径迹证据[J]. 第四纪研究,2008,28(4):584-590. LEI Y L,ZHONG D L,JI J Q,et al. Fission track evidence for two pleistocene uplift-exhumaion events in the eastern Himalayan syntaxis [J].Quaterary Sciences,2008,28(4):584-590.
50 TU J Y,JI J Q,SUN D X,et al. Thermal structure,rock exhumation,and glacial erosion of the Namche Barwa peak,constraints from thermochronological data[J]. Journal of Asian Earth Sciences,2015,105:223-233. DOI:10.1016/j.jseaes.2015.03.035
51 SALVI D,MATHEW G,KOHN B.Rapid exhumation of the upper Siang Valley,Arunachal Himalaya since the Pliocene[J].Geomorphology,2017,284:238-249. DOI:10.1016/j.geomorph. 2016.09.032
52 GONG J F,JI J Q,ZHOU J,et al. Late miocene thermal evolution of the eastern Himalayan syntaxis as constrained by biotite 40Ar/39Ar thermochronology[J].The Journal of Geology,2015,123(4):369-384. DOI:10.1086/682951
53 龚俊峰,季建清,陈建军,等.东喜马拉雅构造结岩体冷却的40Ar/39Ar年代学研究[J].岩石学报,2008,24(10):2255-2272. GONG J F,JI J Q,CHEN J J,et al.40Ar/39Ar geochronology studies of rocks in eastern Himalaya syntaxis[J]. Acta Petrologica Sinica,2008,24(10):2255-2272.
No related articles found!