Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (6): 720-723    DOI: 10.3785/j.issn.1008-9497.2019.06.015
物理学     
非对易空间下高斯势中的氢原子能谱
李叶磊, 梁泂航, 盛正卯
浙江大学 物理学系,浙江 杭州 310027
Hydrogen atom spectrum with Gaussian potential in noncommutative space
LI Yelei, LIANG Jionghang, SHENG Zhengmao
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(435 KB)   HTML  
摘要: 利用Moyal-Weyl星乘和Bopp变换,在微扰论下对非对易空间条件下高斯势中的氢原子能级进行了修正,通过优化高斯势的参数得到能级修正的极值,为探测非对易时空参量提供了新的可能方案。
关键词: 非对易空间高斯势能级修正    
Abstract: The energy levels shift of Hydrogen atom in Gaussian potential due to noncommutative space are studied by using Moyal-Weyl star product, Bopp transformation and the perturbation methods, and the maximum of the energy levels shift is obtained by optimizing the parameters of the Gaussian potential. A new scheme to determine the parameters of noncommutative space is proposed.
Key words: noncommutative space    Gaussian potential    energy level shift
收稿日期: 2018-10-08 出版日期: 2019-11-25
CLC:  O413.1  
基金资助: 国家自然科学基金资助项目(11475147);中央高校基本科研业务费专项(2018FZA3004).
通讯作者: ORCID: http://orcid.org/0000-0002-9745-5727, E-mail:zmsheng@zju.edu.cn.     E-mail: zmsheng@zju.edu.cn
作者简介: 李叶磊(1992—),ORCID: http://orcid.org/0000-0002-8181-4692,男,硕士,主要从事非对易量子力学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李叶磊
梁泂航
盛正卯

引用本文:

李叶磊, 梁泂航, 盛正卯. 非对易空间下高斯势中的氢原子能谱[J]. 浙江大学学报(理学版), 2019, 46(6): 720-723.

LI Yelei, LIANG Jionghang, SHENG Zhengmao. Hydrogen atom spectrum with Gaussian potential in noncommutative space. Journal of ZheJIang University(Science Edition), 2019, 46(6): 720-723.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.06.015        https://www.zjujournals.com/sci/CN/Y2019/V46/I6/720

1 SARGOLZAEIPORS, HASSANABADIH, CHUANGW S. Q-deformed superstatistics of the Schrödinger equation in commutative and noncommutative spaces with magnetic field[J]. The European Physical Journal Plus, 2018, 133:5.
2 LIK, WANGJ H, CHENC Y. Representation of noncommutative phase Space[J]. Modern Physics Letters A, 2005,20(28): 2165-2174.
3 GNATENKOK P, SHYIKOO V. Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space[J]. Modern Physics Letters A, 2018,33(16): 1850091.
4 HASSANABADIAS, GHOMINEJADM. Wigner function for Klein-Gordon oscillator in commutative and noncommutative spaces[J]. The European Physical Journal Plus, 2016,131:212.
5 ARDALANF, ARFAEIH, SHEIKH-JABBARIM M. Noncommutative geometry from strings and branes[J]. The Journal of High Energy Physics, 1999(2):16.
6 WANGW J. Several Scattering Processes in the Noncommutative Standard Model[D]. Hangzhou: Zhejiang University, 2013.
7 SHENGZ M, FUY M, YUH B. Noncommutative QED threshold energy versus optimum collision energy[J]. Chinese Physics Letters, 2005, 22(3): 561-564.
8 LIK, WANGJ H. The topological AC effect on non-commutative phase space[J]. European Physical Journal C, 2007,50(4):1007-1011.
9 WANGW J, HUANGJ H, SHENGZ M. TeV scale phenomenology of e(+)e(-) mu(+)mu(-) scattering in the noncommutative standard model with hybrid gauge transformation[J]. Physical Review D, 2012, 86:025003.
10 MIGUELE, RODRIGUEZR. Quantum effects of Aharonov-Bohm type and noncommutative quantum mechanics[J]. Physical Review A, 2018,97: 012109.
11 CHAICHIANM, SHEIKH-JABBARIM, TUREANU AM. Hydrogen atom spectrum and the Lamb shift in noncommutative QED[J]. Physical Review Letters, 2001,86(13):2716-2719.
12 HO P M, KAO H C. Noncommutative quantum mechanics from noncommutative quantum field theory[J]. Physical Review Letters, 2002,88(15):151602.
No related articles found!