Please wait a minute...
浙江大学学报(理学版)  2019, Vol. 46 Issue (3): 380-390    DOI: 10.3785/j.issn.1008-9497.2019.03.017
地球科学     
1960―2017年秦岭南北地区降雨侵蚀力的时空变化特征研究
芦鑫, 殷淑燕, 高涛涛
陕西师范大学 地理科学与旅游学院,陕西 西安710119
Temporal and spatial variations of rainfall erosivity in the northern and southern regions of Qinling mountains from 1960 to 2017
Xin LU, Shuyan YIN, Taotao GAO
School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, China
 全文: PDF(3385 KB)   HTML  
摘要: 基于秦岭南北地区1960―2017年47个气象站点逐日降雨资料,根据章文波提出的日降雨侵蚀力模型估算降雨侵蚀力,并采用气候倾向率、反距离权重插值及Mann-Mendal突变检验等方法分析秦岭南北地区近58 a年均降雨侵蚀力与不同量级降雨侵蚀力的时空变化特征。 结果表明:(1) 1960―2017年秦岭南北地区年均降雨侵蚀力与不同雨量产生的降雨侵蚀力均呈由南向北递减的特征。(2)近58 a,秦岭南北地区年均降雨侵蚀力、大雨与暴雨侵蚀力年际变化呈增长趋势,未通过突变检测;中雨侵蚀力呈减弱趋势,在1972年发生突变且在2007年后达到显著;其中秦岭以北年均降雨侵蚀力、中雨侵蚀力、暴雨侵蚀力均呈下降趋势,且年际波动程度较大,秦岭以南年均降雨侵蚀力及大雨、暴雨侵蚀力均呈上升趋势。(3)秦岭南北地区年均降雨侵蚀力变化趋势空间差异显著,明显增长区集中于汉中盆地与巴巫谷地,减少区集中于西部嘉陵江、秦岭以北汾河入黄河交界、汉水流域两湖平原;且不同量级侵蚀力呈增长趋势的面积大小依次为大雨侵蚀力>暴雨侵蚀力>中雨侵蚀力。
关键词: 降雨侵蚀力不同雨量级侵蚀力秦岭南北地区    
Abstract: Based on the daily rainfall data of 47 meteorological sites in the northern and southern regions of Qinling mountains,the annual average rainfall erosivity of the northern and southern regions of Qinling mountains is calculated following the rainfall erosivity model proposed by ZHANG which was set up on the basis of daily rainfall. The spatio-temporal characteristics of rainfall erosivity of different rainfalls in the study are analyzed by adopting the climate trend rate, inverse distance weight interpolation and Mann-Mendal mutation test. It shows: (1)The annual average rainfall erosivity due to different rainfalls in the concerned area from 1960 to 2017 exhibits a decreasing feature from south to north. (2)The interannual changes of the annual average rainfall erosivity, the erosivity due to rainstorm and heavy rain in the past 58 years shows an increasing trend, which fails to be detected by mutations. The erosivity due to moderate rain shows a decreasing trend. The mutation occurred in 1972, it reached a significant value after 2007. The annual average rainfall erosivity and storm erosivity in the northern region of the Qinling mountains exhibits a downward trend, and the degree of interannual fluctuations is relatively large. However, these parameters in the southern regions of the Qinling mountains demonstrates an opposite trend. (3)The average annual rainfall erosivity in the study shows a significant spatial variation. The obvious growth areas are concentrated in the Hanzhong basin and the Bawu valley. The reduction areas are concentrated in the western Jialing River , the junction of the Fen River and the Yellow River, as well as the two lake plains. The size of the area where the erosivity showed a growth trend presents a correspondence with the amount of the rainfall: heavy rainfall>rainstorm >moderate rain.
Key words: rainfall erosivity    the different magnitude of rainfall erosivity    the northern and southern Qinling mountains
收稿日期: 2018-04-11 出版日期: 2019-05-25
CLC:  S157.1  
基金资助: 国家自然科学基金资助项目(41601020);陕西省自然科学基础研究计划项目(2017JM4026).
通讯作者: ORCID: http://orcid.org/0000-0003-1114-6032, E-mail:yinshy@snnu.edu.cn.     E-mail: yinshy@snnu.edu.cn.
作者简介: 芦鑫(1994―),ORCID: http://orcid.org/0000-0002-4053-8847 , 女,硕士研究生,主要从事环境变化与自然灾害研究,
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
芦鑫
殷淑燕
高涛涛

引用本文:

芦鑫, 殷淑燕, 高涛涛. 1960―2017年秦岭南北地区降雨侵蚀力的时空变化特征研究[J]. 浙江大学学报(理学版), 2019, 46(3): 380-390.

Xin LU, Shuyan YIN, Taotao GAO. Temporal and spatial variations of rainfall erosivity in the northern and southern regions of Qinling mountains from 1960 to 2017. Journal of ZheJIang University(Science Edition), 2019, 46(3): 380-390.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2019.03.017        https://www.zjujournals.com/sci/CN/Y2019/V46/I3/380

1 The Ministry of Water Resources of the People’s Republic of China.China Soil and Water Conservation Bulletin 2016[R].Beijing:The Ministry of Water Resource of People's Republic of China,2017-09-18.
2 SUNQ Z, WANGC J, ZHAOJ, et al.Research evolution of rainfall erosivity( R) in China[J]. Chinese Agricultural Science Bulletin, 2011,27(4) : 1-5.
3 ZHANGW B,XIEY,LIUB Y.Research evolution of rainfall erosivity[J]. Journal of Soil and Water Conservation, 2002,16(5) : 43-46. DOI:10.3321/j.issn:1009-2242.2002.05.058
4 LIUB T, TAOH P, SONGC F, et al.Temporal and spatial variations of rainfall erosivity in southwest china from 1960 to 2009[J]. Advances in Earth Science, 2012, 27(5):499-509.DOI: 10.11867/j.issn.1001-8166.2012.05.0499
5 ZHAOP W, GUOP. Spatial and temporal variations of rainfall erosivity in northwest Yunnan province[J]. Scientia Geographical Sinica, 2015, 35(10):1306-1311. DOI:10.13249/j.cnki.sgs.2015.10.013
6 TAOW X, MA Y X, ZHANGJ, et al.Spatial and temporal variations of rainfall erosivity in Weihe River basin[J]. Bulletin of Soil and Water Conservation, 2016, 36(6):110-114.DOI:10.13961/j.cnki.stbctb.2016.06.018
7 LIJ, LIUZ H, LIR.Temporal and spatial characteristics of rainfall erosivity with different geomorphology types on the Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2008, 28(3):124-127. DOI:10.13961/j.cnki.stbctb.2008.03.025
8 HUL, SUJ, SANGY Z, et al.Spatial and temporal characteristics of rainfall erosivity in Shaanxi province[J]. Arid Land Geography, 2014, 37(6):1101-1107.DOI:10.13826/j.cnki.cn65-1103/x.2014.06.002
9 LIUB T, TAOH P, SONGC F, et al.Temporal and spatial variations of rainfall erosivity in China during 1960 to 2009[J]. Geographical Research, 2013, 32(2):245-256. DOI: 10.11821/yj2013020005
10 FANJ R, YAND, GUOX.Spatial and temporal distribution of rainfall erosivity based on GIS in the upper Yangtze River basin[J]. Research of Soil and Water Conservation, 2010, 17(1):92-96.
11 ZHANGJ Q, GONGJ, WUY J.A preliminary study on rainfall erosion force in Hubei Base done the data of daily rainfall[J]. Resources and Environment in the Yangtze Basin, 2014, 23(2):274-280.DOI:10.11870/cjlyzyyhj201402017
12 WISCHMEIERW H, SMITHD D.Rainfall energy and its relationship to soil loss[J]. Eos Transactions American Geophysical Union, 1958, 39(2):285-291.DOI:10.1029/TR039i002p00285
13 WISCHMEIERW H.A rainfall erosion index for a universal soil-loss equation[J]. Proc Soil Science Society of America, 1959, 23(3):246-249.DOI:10.2136/sssaj1959.03615995002300030027x
14 WUY P, XIEY, ZHANGW B.Comparison of different methods for estimating average annual rainfall erosivity[J]. Journal of Soil and Water Conservation, 2001, 15(3):31-34.DOI:10.3321/j.issn:1009-2242.2001.03.009
15 LEE J H, HEO J H.Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea[J]. Journal of Hydrology, 2011, 409(1):30-48.DOI: 10.1016/j.jhydrol.2011.07.031
16 RICHARDSONC W, FOSTERG R, WRIGHTD A. Estimation of erosion index from daily rainfall amount[J]. Transactions of the ASAE, 1983, 26(1):153-156. DOI:10.13031/2013.33893
17 YINS Q, XIEY, WANGC G.Calculation of rainfall erosivity by using hourly rainfall data[J]. Geographical Research, 2007, 26(3):541-547.DOI:10.3321/j.issn:1000-0585.2007.03.015
18 ZHANGW B, FUJ S.Rainfall erosivity estimation under different rainfall amount [J]. Resources Science,2003,25(1) : 35-41.DOI:10.3321/j.issn:1007-7588.2003.01.006
19 YUB.Rainfall erosivity and its estimation for Australia's tropics[J]. Soil Research, 1998, 36(1):143-165.DOI: 10.1071/S97025
20 HASHIMG M, YUB.Estimating the R-factor with limited rainfall data: A case study from Peninsular Malaysia[J]. Journal of Soil & Water Conservation, 2001, 56(2):101-105.
21 ZHANGW B,XIEY,LIUB Y. Spatial distribution of rainfall erosivity in China[J]. Journal of Mountain Science, 2003, 21(1):33-40.DOI:10.3969/j.issn.1008-2786.2003.01.005
22 ZHAOP W , GUOP, LIC W, et al.Characteristic analysis of rainfall erosivity at each level in Yunnan province[J]. Resources and Environment in the Yangtze Basin, 2015, 24(12):2135-2141.DOI:10.11870/cjlyzyyhj201512018
23 LINX D, YINZ Y, SHAOX M, et al.Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D19):D19109.DOI: 10.1029/2005JD006915
24 WANGM, YINS Y.Spatio-temporal variations of the extreme precipitation of middle and lower reaches of the Yangtze river in recent 52 years[J]. Journal of Geophysical Research Atmospheres, 2015, 24(7):1221-1229. DOI:10.11870/cjlyzyyhj201507020
25 YANGB, ZHANGB, ANM L, et al.Spatio-temporal characteristic of precipitation extremes in the Qinba mountains region during 1961—2011[J]. Research of Soil and Water Conservation, 2014, 21(1):110-116. DOI:10.13869/j.cnki.rswc.2014.01.022
26 ZHOUJ Q, PANGZ L, CAIQ G, et al.Susceptibility zoning of different types of mountain torrent disasters in the Yangtze River Basin of southern China[J]. Journal of Beijing Forestry University, 2017, 39(11):56-64.DOI:10.13332/j.1000-1522.20170169
27 DONGY, FENGN J, YANGY C.Discussion on geological disaster caused by extreme meteorological factors in the southern area of Ankang city in Shaanxi province[J]. Science & Technology Information, 2013(36):235-238.DOI:10.16661/j.cnki.1672-3791.2013.36.177
28 WUG H.Physical Geography[M]. Beijing:Higher Education Press, 2000.
29 WANGJ Y, ZHANGC H, GAOB, et al.Spatial distribution and type classification of super large landslides in Shaanxi province[J]. Research of Soil and Water Conservation, 2017, 24(2):359-364. DOI:10.13869/j.cnki.rswc.2017.02.059
30 QIANGF, ZHAOF S, DANGY Q.Correlation analysis between geological hazards and impact factors in Qinling-Daba mountainous of south Shaanxi province[J]. South-to-North Water Transfers Water and Science & Technology, 2015, 13(3):557-562.DOI:10.13476/j.cnki.nsbdqk.2015.03.035
No related articles found!