Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (4): 569-578    DOI: 10.3785/j.issn.1006-754X.2025.05.138
Mechanical parts and equipment design     
Research on performance of rubber modified phenolic resin matrix friction plates
Yukun ZHANG1(),Zaojun ZHAO2,Qifeng JIANG2,Yueping WENG2,Bing XU1,Huayong YANG1,Zhe CHEN1()
1.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
2.Tieliu Co. , Ltd. , Hangzhou 311103, China
Download: HTML     PDF(4634KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

With the advancement of heavy duty trucks toward higher speed, increased load capacity, enhanced safety, and improved comfort, more stringent requirements have been placed on the performance of the clutch friction plates. This study focused on the preparation process and performance of rubber-modified resin matrix friction materials for dry clutch plates, and a systematic performance comparison was conducted between styrene butadiene rubber-modified phenolic resin matrix friction materials (SBR-PF) produced through the sol-gel method and nitrile butadiene rubber-modified phenolic resin matrix friction materials (NBR-PF) produced through the extrusion-compression method. The friction behaviors of two materials at different temperatures was investigated through friction and wear tests, and wear mechanisms were analyzed in combination with scanning electron microscopy. Additionally, the prepared friction plates were subjected to standardized heat fade and judder tests on clutch benches. The results demonstrated that NBR-PF exhibited significantly higher stability in friction coefficient at elevated temperatures compared to SBR-PF, along with superior wear resistance. As temperature increased, the wear mechanisms of both materials transitioned from abrasive wear to a combination of oxidative wear and fatigue wear. NBR-PF displayed exceptional thermal fade resistance and anti-judder characteristics. In heat fade tests, the friction coefficient of SBR-PF began to decline sharply at approximately 330 ℃ and dropped below 0.2 at approximately 380 ℃, whereas NBR-PF maintained a friction coefficient above 0.2 even at 400 ℃. In judder tests, the average torsional vibration attenuation coefficient of SBR-PF exceeded the standard value at 200 r/min, and its maximum torsional vibration attenuation coefficient exceeded the standard value at 200 r/min and 500 r/min. The average torsional vibration attenuation coefficient and the maximum torsional vibration attenuation coefficient of NBR-PF under different conditions were lower than the standard values. This research results provide new ideas for the preparation of environmentally friendly friction materials and technical support for the comprehensive performance optimization of clutches.



Key wordsdry clutch      friction material      rubber      phenolic resin      heat fade      judder     
Received: 12 May 2025      Published: 01 September 2025
CLC:  TH 117.1  
Corresponding Authors: Zhe CHEN     E-mail: 22325165@zju.edu.cn;zhe-chen@zju.edu.cn
Cite this article:

Yukun ZHANG,Zaojun ZHAO,Qifeng JIANG,Yueping WENG,Bing XU,Huayong YANG,Zhe CHEN. Research on performance of rubber modified phenolic resin matrix friction plates. Chinese Journal of Engineering Design, 2025, 32(4): 569-578.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.138     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I4/569


橡胶改性酚醛树脂基摩擦片性能研究

随着重型卡车向着更高速、重载、安全和舒适方向的发展,对其离合器摩擦片的性能提出了更高要求。针对汽车干式离合器摩擦片用橡胶改性树脂基摩擦材料的制备工艺和性能展开研究,系统对比了采用溶胶法制备的丁苯橡胶改性酚醛树脂基摩擦材料(styrene butadiene rubber-modified phenolic resin matrix friction materials, SBR-PF)与采用挤胶法制备的丁腈橡胶改性酚醛树脂基摩擦材料(nitrile butadiene rubber-modified phenolic resin matrix friction materials, NBR-PF)的性能。通过摩擦磨损试验研究了2种材料在不同温度下的摩擦行为,并结合扫描电子显微镜分析了其磨损机理。将制备好的摩擦片安装在离合器台架中,开展了标准热衰退试验和振颤试验。结果表明:NBR-PF的摩擦因数在高温下的稳定性远优于SBR-PF,同时NBR-PF具有更好的耐磨性;随着温度升高,2种材料的磨损机理都从磨粒磨损逐步演变为氧化磨损与疲劳磨损的复合作用;NBR-PF表现出更优异的抗热衰退能力和抗振颤能力。在热衰退试验中,SBR-PF的摩擦因数在330 °C左右开始急剧下降,在380 °C左右下降到0.2以下,而NBR-PF的摩擦因数在400 ℃时仍未衰减到0.2以下。在振颤试验中,SBR-PF的平均扭振衰减系数在200 r/min转速下超过了标准值,其最大扭振衰减系数在200 r/min和500 r/min转速下都超过了标准值,而NBR-PF在不同工况下的平均扭振衰减系数和最大扭振衰减系数都低于标准值。研究结果为环保型摩擦材料的制备提供了新思路,为离合器综合性能的优化提供了技术支撑。


关键词: 干式离合器,  摩擦材料,  橡胶,  酚醛树脂,  热衰退,  振颤 
Fig.1 Molecular structure of SBR, NBR and PF
Fig.2 Constant speed friction and wear test machine
Fig.3 Clutch comprehensive performance test bench C1
Fig.4 Clutch friction plate judder test bench C2
试验参数磨合条件试验条件
惯量/(kg·m2)1.253.11
转速/(r/min)1 4701 470
离合频率/(次/min)12.4
每次离合的滑摩功/kJ12.737
每次离合的额定功/(N·m/cm2)37106
平均额定功率负载/(W/cm2)0.64.3
离合数/次100100
Table 1 Running-in condition and test condition of heat fade test
离合数/次

每次离合

时间/s

转速差/

(r/min)

能量/

kJ

201050015
201080015
10101 00015
Table 2 Cycle condition for 50 times of engagement and disengagement of clutch
Fig.5 Hardness and flexural strength of friction materials
Fig.6 Thermogravimetric variation curves of friction materials
Fig.7 Friction coefficients of friction materials at different temperatures
Fig.8 Wear rates of friction materials at different temperatures
Fig.9 SEM images of friction material samples at different temperatures
Fig.10 Results of heat fade test of friction material samples
Fig.11 Results of judder test of friction material samples
Fig.12 Average torsional vibration attenuation coefficients and maximum torsional vibration attenuation coefficients of friction material samples under different operation conditions
[[1]]   BIJWE J, NIDHI, MAJUMDAR N, et al. Influence of modified phenolic resins on the fade and recovery behavior of friction materials[J]. Wear, 2005, 259(7/8/9/10/11/12): 1068-1078.
[[2]]   KRYACHEK V M. Friction composites: traditions and new solutions (review). Part 2. Composite materials[J]. Powder Metallurgy and Metal Ceramics, 2005, 44(1/2): 5-16.
[[3]]   NILOV A S, KULIK V I, GARSHIN A P. Analysis of friction materials and technologies developed to make brake shoes for heavily loaded brake systems with disks made of a ceramic composite[J]. Refractories and Industrial Ceramics, 2015, 56(4): 402-412.
[[4]]   LIU Y, BAO J S, HU D Y, et al. A review on the research progress of nano organic friction materials[J]. Recent Patents on Nanotechnology, 2016, 10(1): 11-19.
[[5]]   XIAO X M, YIN Y, BAO J S, et al. Review on the friction and wear of brake materials[J]. Advances in Mechanical Engineering, 2016, 8(5): 1687814016647300.
[[6]]   ADEM A A, PANJIAR H, DANIEL B S S. The effect of nanocarbon inclusion on mechanical, tribological, and thermal properties of phenolic resin-based composites: an overview[J]. Engineering Reports, 2024, 6(4): e12861.
[[7]]   AHDY M A, ALI M K A, MOURAD M, et al. Review of automotive brake lining materials and their tribological properties[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236(7): 1445-1465.
[[8]]   ILANKO A K, VIJAYARAGHAVAN S. Wear behavior of asbestos-free eco-friendly composites for automobile brake materials[J]. Friction, 2016, 4(2): 144-152.
[[9]]   SINGARAVELU D L, VIJAY R, FILIP P. Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites[J]. Wear, 2019, 426: 1129-1141.
[[10]]   LI D X, HU X, HUANG Z H, et al. Effect of several modifiers on the mechanical and tribological properties of phenol formaldehyde resin[J]. High Performance Polymers, 2018, 30(5): 580-590.
[[11]]   MURA A, ADAMO F, WANG H Z, et al. Investigation about tribological behavior of ABS and PC-ABS polymers coated with graphene[J]. Tribology International, 2019, 134: 335-340.
[[12]]   DING M J, DENG Z Y, HUANG Z X, et al. Recovery of polyimide waste film by mechanical method to improve the heat fade resistance of BPR matrix friction composites[J]. Wear, 2022, 502: 204398.
[[13]]   SHIN M W, CHO K H, LEE W K, et al. Tribological characteristics of binder resins for brake friction materials at elevated temperatures[J]. Tribology Letters, 2010, 38(2): 161-168.
[[14]]   谢茂青, 王雷刚. 六钛酸钾晶须增强汽车干式离合器摩擦片的热衰退和振颤特性[J]. 粉末冶金材料科学与工程, 2020, 25(6): 520-526.
XIE M Q, WANG L G. Thermal degradation and judder characteristics of the friction facing for automobile dry clutch enhanced by potassium hexatitanate whisker[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6): 520-526.
[[15]]   杜嘉俊, 朱永梅, 谭雪龙, 等. 树脂基复合材料摩擦片摩擦学性能研究[J]. 摩擦学学报, 2017, 37(5): 574-580.
DU J J, ZHU Y M, TAN X L, et al. Tribological properties of resin matrix composites[J]. Tribology, 2017, 37(5): 574-580.
[[16]]   屈盛官, 袁志敏, 赖福强, 等. 中重型车辆离合器摩擦副材料的高温摩擦磨损性能[J]. 中南大学学报(自然科学版), 2018, 49(5): 1087-1094.
QU S G, YUAN Z M, LAI F Q, et al. Friction and wear properties for clutch friction materials in medium-heavy-duty vehicle at high temperature[J]. Journal of Central South University (Science and Technology), 2018, 49(5): 1087-1094.
[[17]]   SATAPATHY B K, BIJWE J. Performance of friction materials based on variation in nature of organic fibres Part Ⅱ. Optimisation by balancing and ranking using multiple criteria decision model (MCDM)[J]. Wear, 2004, 257(5/6): 585-589.
[[18]]   ALEKSENDRIĆ D, DUBOKA Č. Fade performance prediction of automotive friction materials by means of artificial neural networks[J]. Wear, 2007, 262(7/8): 778-790.
[[19]]   YAN Z F, LI H S, LEI H R, et al. Study of the judder characteristics of friction material for an automobile clutch and test verification[J]. Chinese Journal of Mechanical Engineering, 2023, 36(1): 53.
[[20]]   徐祥, 杨明, 张世伟, 等. 有机复合摩擦材料的成分优化及其对摩擦性能的影响[J]. 材料导报, 2017, 31: 447-450.
XU X, YANG M, ZHANG S W, et al. Composition optimization of organic composite friction materials and its influence on friction properties[J]. Materials Reports, 2017, 31: 447-450.
[[21]]   王雄, 张德震, 陆士平. 氯丙烯改性甲阶酚醛树脂的性能[J]. 华东理工大学学报(自然科学版), 2016, 42(5): 639-643.
WANG X, ZHANG D Z, LU S P. Properties of allyl chloride modified resole resin[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(5): 639-643.
[[22]]   胡先刚. 玄武岩微纤维表面改性增强酚醛树脂复合材料及摩擦性能研究[D]. 南京: 东南大学, 2019.
HU X G. Study on surface modification and friction properties of basalt microfiber reinforced phenolic resin composites[D]. Nanjing: Southeast University, 2019.
[[23]]   文国富, 王秀飞, 尹彩流, 等. 碳酸钙晶须含量对橡胶基摩擦材料性能的影响[J]. 机械工程材料, 2017, 41(4): 80-83, 88.
WEN G F, WANG X F, YIN C L, et al. Effect of calcium carbonate whisker content on properties of rubber based friction materials[J]. Materials for Mechanical Engineering, 2017, 41(4): 80-83, 88.
[[24]]   DERAKHSHANDEH B, SHOJAEI A, FAGHIHI M. Effects of rubber curing ingredients and phenolic-resin on mechanical, thermal, and morphological characteristics of rubber/phenolic-resin blends[J]. Journal of Applied Polymer Science, 2008, 108(6): 3808-3821.
[[25]]   李萍, 石磊, 李晓燕, 等. 酚醛摩擦材料研究进展[J]. 工程塑料应用, 2016, 44(9): 145-148.
LI P, SHI L, LI X Y, et al. Research progress of phenolic friction materials[J]. Engineering Plastics Application, 2016, 44(9): 145-148.
[[26]]   LI S, HAN Y, CHEN F H, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability, 2016, 124: 68-76.
[[27]]   陈晨,付业伟,李贺军,等.丁腈橡胶含量对橡胶/树脂双基体摩擦材料性能的影响[J].润滑与密封,2016,41(1):43-49.
CHEN C, FU Y W, LI H J, et al. Effect of Nitrile Butadiene Rubber Content on the Performance of Rubber/Resin Matrix Composite Friction Materials[J]. Lubrication Engineering, 2016,41(1):43-49.
[[28]]   姚冠新, 罗玲, 王玉玲. 钼酸铵–丁腈橡胶复合改性酚醛树脂的制备[J]. 工程塑料应用, 2015, 43(11): 17-21.
YAO G X, LUO L, WANG Y L. Preparation of modified phenolic resin with ammonium molybdate and rubber nitrile[J]. Engineering Plastics Application, 2015, 43(11): 17-21.
[[29]]   李勃, 周计明, 齐乐华, 等. 丁腈橡胶对腰果壳油改性酚醛树脂基摩擦材料性能的影响[J]. 润滑与密封, 2016, 41(2): 42-46, 111.
LI B, ZHOU J M, QI L H, et al. Effect of nitrile rubber on properties of cashew-modified phenolic resin-based friction materials[J]. Lubrication Engineering, 2016, 41(2): 42-46, 111.
[[30]]   崔功军, 鲁张祥, 韩俊瑞, 等. 改性酚醛树脂对摩擦片制动性能的影响[J]. 矿山机械, 2018, 46(1): 53-58.
CUI G J, LU Z X, HAN J R, et al. Influence of modified phenolic resin on braking performance of friction disc[J]. Mining & Processing Equipment, 2018, 46(1): 53-58.
[1] Ping QIAN,Jiayu SHI,Wenhua CHEN,Fan YANG,Youwei WANG. Modeling and verification of storage reliability of G100 silicone rubber insulation part for electrical connector[J]. Chinese Journal of Engineering Design, 2025, 32(4): 514-522.
[2] LI Song-mei, ZHENG Zhe, LI Shuai-shuai, CHANG De-gong. Structure and fatigue life analysis of damping type tripod universal joint[J]. Chinese Journal of Engineering Design, 2019, 26(5): 520-526.
[3] LI Wei, SONG Wei, LEI Hong-xiang, LI Zong-qi, LI Bin. Design and analysis of new anti-extrusion device for packer rubber[J]. Chinese Journal of Engineering Design, 2017, 24(3): 359-364.
[4] LI Wei, LEI Hong-xiang, YANG Bo, LI Zong-qi, LI Bin. Design and experimental analysis of downhole blow-out preventer[J]. Chinese Journal of Engineering Design, 2016, 23(4): 371-377.
[5] LI Wei, LEI Hong-xiang, LI Zong-qi, LI Bin, YUAN Sheng-tong. Design and research of high pressure sealing connector[J]. Chinese Journal of Engineering Design, 2016, 23(3): 295-300.
[6] CHEN Bao,CHEN Qian,Christian Lohse,LEI Gang. Test verification and mechanical property estimation for rubber bushing of suspension based on "double methods-multiple equations"[J]. Chinese Journal of Engineering Design, 2014, 21(1): 43-50.
[7] XIAO Deng-Hong, WANG Jun-Yuan, ZENG Zhi-Qiang, DU Wen-Hua. Research on dynamic characteristics of an explosion-proof rubber-tyred vehicle[J]. Chinese Journal of Engineering Design, 2011, 18(1): 23-27.
[8] HU Zhen-Xian, GU Liang, WANG Guo-Li. Experiment test of dynamic characteristics and parameter identification for top-mount on shocker[J]. Chinese Journal of Engineering Design, 2009, 16(6): 427-431.