Mechanical parts and equipment design |
|
|
|
|
Design and performance analysis of soil groove test trolley in hilly and mountainous areas |
Weijian LIU1( ),Jiahao ZHANG1,Xiaolan YU2,Donghao LI3,Yuan WANG1,Manman LI1,Zhaoguo ZHANG1( ) |
1.Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China 2.Guizhou Provincial Agricultural Machinery Technology Extension General Station, Guiyang 550000, China 3.College of Agriculture, South China Agricultural University, Guangzhou 510642, China |
|
|
Abstract In response to the current problems of "no machines available, no machines easy to use" and poor agricultural production capacity in hilly and mountainous areas, the design and performance analysis of a soil groove test trolley in hilly and mountainous areas have been carried out. Firstly, the mechanical system, data acquisition system and control system of the soil groove test trolley were designed. Then, the passing ability of the soil groove test trolley was analyzed based on the RecurDyn-EDEM coupling simulation. Finally, the overall performance of the soil groove test trolley was tested and analyzed. The simulation results showed that the soil groove test trolley started to accelerate at t=0 s, and its travelling speed reached 0.7 m/s at t=2.7 s. Then, the travelling speed began to decrease sharply until the end of simulation, and the final travelling speed fluctuated around 0.1 m/s. During the simulation process, the limit spring could provide a friction force of approximately 700 N, and the resultant force of the suspension device reached 6 665 N. The simulation results preliminarily verified the rationality of the soil groove test trolley design scheme. The test results showed that the angular acceleration of the power output shaft of the soil groove test trolley was 14.74 rad/s2, and there was an error of 15 to 20 r/min between the actual rotational speed and the target rotational speed. The maximum travelling speed of the soil groove test trolley could reach 1.6 m/s, with a required braking time of 2.61 s and a corresponding braking distance of 1.62 m. When the soil groove test trolley travelled at a target speed of 0.2 m/s and was used in conjunction with a Sanqi excavation shovel for simulation test, it could reach the target speed within 2 s, and the measured maximum working resistance was 2 990.07 N. The above test data all meet the design requirements, which can provide theoretical basis and reference for the design of soil groove test trolleys in hilly and mountainous areas.
|
Received: 06 January 2025
Published: 01 September 2025
|
|
Corresponding Authors:
Zhaoguo ZHANG
E-mail: 531964726@qq.com;zzg@kust.edu.cn
|
丘陵山区土槽试验台车设计与性能分析
针对目前丘陵山区“无机可用、无机好用”以及农业生产能力差等问题,开展了丘陵山区土槽试验台车的设计与性能分析。首先,对土槽试验台车的机械系统、数据采集系统及控制系统进行了设计。然后,基于RecurDyn-EDEM耦合仿真对土槽试验台车的通过性进行了分析。最后,对土槽试验台车的整体性能进行了试验与分析。仿真结果表明:土槽试验台车从t=0 s开始加速,其行进速度在t=2.7 s时达到0.7 m/s,随后行进速度开始骤减直至仿真结束,最终的行进速度在0.1 m/s左右波动。在仿真过程中,限位弹簧能够提供大约700 N的摩擦力,悬挂装置的合力达到了6 665 N,仿真结果初步验证了土槽试验台车设计方案的合理性。试验结果表明:土槽试验台车动力输出轴的角加速度为14.74 rad/s2,其实际转速与目标转速之间存在15~20 r/min的误差;土槽试验台车的最大行进速度可达1.6 m/s,所需制动时间为2.61 s,对应的制动距离为1.62 m。当土槽试验台车以0.2 m/s为目标速度行进并搭配三七挖掘铲开展模拟试验时,其在2 s内即可达到目标速度,所测得的最大工作阻力为2 990.07 N。上述试验数据均满足设计要求,可为丘陵山区土槽试验台车的设计提供理论依据和参考。
关键词:
丘陵山区,
土槽试验台车,
RecurDyn-EDEM耦合仿真,
性能分析
|
|
[[1]] |
陈正发. 云南坡耕地质量评价及土壤侵蚀/干旱的影响机制研究[D]. 重庆: 西南大学, 2019. doi:10.3390/su12177230 CHEN Z F. Quality evaluation of slope farmland in Yunnan Province and soil erosion/drought influencing mechanisms[D]. Chongqing: Southwest University, 2019.
doi: 10.3390/su12177230
|
|
|
[[2]] |
余红斌, 邓庆. 云南省农业机械化转型升级的思考[J]. 南方农机, 2020, 51(13): 56. YU H B, DENG Q. Thoughts on the transformation and upgrading of agricultural mechanization in Yunnan Province [J]. China Southern Agricultural Machinery, 2020, 51(13): 56.
|
|
|
[[3]] |
韩昌远. 云南省丘陵山区农机化发展浅析[J]. 中国农机监理, 2021(7): 46-47. HAN C Y. Analysis on the development of agricultural mechanization in hilly and mountainous areas of Yunnan Province[J]. China Agricultural Machinery Safety Supervision, 2021(7): 46-47.
|
|
|
[[4]] |
李军, 金嗣淳, 王桂英, 等. 土槽试验台研究综述[J]. 湖北理工学院学报, 2015, 31(5): 1-5. LI J, JIN S C, WANG G Y, et al. Review of study on soil bin test-bed[J]. Journal of Hubei Polytechnic University, 2015, 31(5): 1-5.
|
|
|
[[5]] |
许鹏. 农业机械田间土槽系统研制[D]. 广州: 华南农业大学, 2020. XU P. Development of agricultural machinery field soil trough system[D]. Guangzhou: South China Agricultural University, 2020.
|
|
|
[[6]] |
周晶. 土槽试验台车系统的设计和研究[D]. 南京: 南京农业大学, 2015. ZHOU J. The design and research of soil bin facility system [D]. Nanjing: Nanjing Agricultural University, 2015.
|
|
|
[[7]] |
谢建华, 曹晓冉, 杨业龙, 等. 小型土槽台车测试系统的设计与试验[J]. 机械设计, 2017, 34(7): 38-42. XIE J H, CAO X R, YANG Y L, et al. Design and experiment of small-scale soil bin testing system[J]. Journal of Machine Design, 2017, 34(7): 38-42.
|
|
|
[[8]] |
杨旭. 电力四驱农机土槽试验台车的研制[D]. 长春: 吉林大学, 2014. YANG X. The design of the electric all-wheel-drive farm machinery soil bin testing car[D]. Changchun: Jilin University, 2014.
|
|
|
[[9]] |
姚忠志, 沈东华, 皮灵杰, 等. 简易土槽试验台的设计与试验[J]. 农机化研究, 2023, 45(8): 39-45, 102. YAO Z Z, SHEN D H, PI L J, et al. Design and test of simple soil trough test bench[J]. Journal of Agricultural Mechanization Research, 2023, 45(8): 39-45, 102.
|
|
|
[[10]] |
PÁSZTOR J, POPA-MÜLLER I. Study of three-point linkage of power machine[J]. Műszaki Tudományos Közlemények, 2021, 14(1): 60-64.
|
|
|
[[11]] |
MUDROV A P, MUDROV A G, YAKHIN S M, et al. Study of spatial hinge mechanisms and their use in agricultural machines[J]. BIO Web of Conferences, 2020, 17: 00012.
|
|
|
[[12]] |
TAMÁS K. The role of bond and damping in the discrete element model of soil-sweep interaction[J]. Biosystems Engineering, 2018, 169: 57-70.
|
|
|
[[13]] |
中国农业机械化科学研究院. 农业机械设计手册[M]. 北京: 中国农业科学技术出版社, 2007. Chinese Academy of Agricultural Mechanization Sciences. Handbook of agricultural machinery design[M]. Beijing: China Agricultural Science and Technology Press, 2007.
|
|
|
[[14]] |
解开婷. 三七根土复合体分离机理研究[D]. 昆明: 昆明理工大学, 2022. XIE K T. Study on separation mechanism of Panax notoginseng soil complex[D]. Kunming: Kunming University of Science and Technology, 2022.
|
|
|
[[15]] |
周刘川. 导轨式四驱农耕试验台车的设计与研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. ZHOU L C. Design and research of rail-wheel-drive test trolley[D]. Harbin: Harbin Engineering University, 2014.
|
|
|
[[16]] |
中国农业机械化科学研究院. 实用机械设计手册[M]. 北京: 中国农业机械出版社, 1985. Chinese Academy of Agricultural Mechanization Sciences. Practical mechanical design manual[M]. Beijing: China Agricultural Machinery Press, 1985.
|
|
|
[[17]] |
谢小四, 刘军. 西门子S7-1200与S7-200 SMART通信探究[J]. 现代制造技术与装备, 2022, 58(1): 90-92. XIE X S, LIU J. Research on communication between Siemens S7-1200 and S7-200 SMART[J]. Modern Manufacturing Technology and Equipment, 2022, 58(1): 90-92.
|
|
|
[[18]] |
于艳, 龚丽农, 尚书旗. 农机土槽试验动力学参数测试系统的研制[J]. 农业工程学报, 2011, 27(): 323-328. YU Y, GONG L N, SHANG S Q. Development of soil bin test dynamic parameters measurement system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(): 323-328.
|
|
|
[[19]] |
王法安, 倪畅, 张兆国, 等. 三七收获机挖掘铲减阻特性分析与试验[J]. 农业机械学报, 2024, 55(7): 179-190, 199. WANG F A, NI C, ZHANG Z G, et al. Analysis and experiment on drag reduction characteristics of digging shovel of Panax notoginseng harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(7): 179-190, 199.
doi: 10.3785/j.issn.1006-754X.2025.05.101
|
|
|
[[19]] |
本文链接: 刘伟健, 张家豪, 余小兰, 等. 丘陵山区土槽试验台车设计与性能分析[J]. 工程设计学报, 2025, 32(4): 550-561. doi:10.3785/j.issn.1006-754X.2025.05.101
doi: 10.3785/j.issn.1006-754X.2025.05.101
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|