Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (4): 514-522    DOI: 10.3785/j.issn.1006-754X.2025.05.133
Reliability and Quality Design     
Modeling and verification of storage reliability of G100 silicone rubber insulation part for electrical connector
Ping QIAN1,Jiayu SHI1,Wenhua CHEN1,Fan YANG2,Youwei WANG1
1.National and Local Joint Engineering Research Center for Reliability Analysis and Testing of Electromechanical Products, Zhejiang Sci-Tech University, Hangzhou 310018, China
2.College of Engineering, Huzhou University, Huzhou 313000, China
Download: HTML     PDF(3846KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Focusing on the reliability modeling of G100 silicone rubber insulation parts for electrical connector under long-term storage conditions, this study analyzed and revealed at the microscopic level that the primary cause of insulation resistance degradation was the oxidation and hydrolysis reactions of polymeric molecular groups in the material matrix induced by environmental temperature and humidity. Based on molecular dynamics and the law of mass action, the change of the carrier concentration of G100 silicone rubber under the effect of temperature and humidity was analyzed, and a physical model for the failure of G100 silicone rubber was established. By applying the central limit theorem, a storage reliability model for G100 silicone rubber insulation part was constructed. The validity and rationality of the constructed model were verified through A-D (Anderson-Darling) and goodness-of-fit tests, supported by scanning electron microscopy and Fourier-transform infrared spectroscopy. The research results provide a theoretical foundation for evaluating the insulation reliability of G100 silicone rubber for electrical connector under long-term storage conditions.



Key wordsinsulation part for electrical connector      G100 silicone rubber      failure physics model      reliability assessment     
Received: 23 April 2025      Published: 01 September 2025
CLC:  V 442  
Cite this article:

Ping QIAN,Jiayu SHI,Wenhua CHEN,Fan YANG,Youwei WANG. Modeling and verification of storage reliability of G100 silicone rubber insulation part for electrical connector. Chinese Journal of Engineering Design, 2025, 32(4): 514-522.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.133     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I4/514


电连接器用G100硅橡胶绝缘件贮存可靠性建模与验证

针对电连接器用G100硅橡胶绝缘件在长期贮存条件下的可靠性建模问题,从微观层面分析并揭示了其绝缘电阻下降的主要原因是环境温度和湿度引起了材料基体大分子基团发生氧化和水解反应;基于分子动力学和质量作用定律,分析了在温度和湿度影响下G100硅橡胶载流子浓度的变化,建立了G100硅橡胶失效物理模型;结合中心极限定理,构建了G100硅橡胶绝缘件贮存可靠性模型;利用A-D(Anderson-Darling)检验法和拟合优度检验法,结合扫描电镜和傅里叶变换红外光谱仪,验证了所构建模型的正确性和合理性。研究结果为电连接器用G100硅橡胶在长贮条件下的绝缘可靠性评估提供了理论基础。


关键词: 电连接器绝缘件,  G100硅橡胶,  失效物理模型,  可靠性评估 
Fig.1 Structure of socket for a certain type of electrical connector
Fig.2 Schematic diagram of G100 silicone rubber insulation part
Fig.3 Schematic of microscopic mechanism of ionic conductance
试验组号温度/℃相对湿度/%
17572
26596
35584
46584
57596
65572
Table 1 Performance degradation test scheme of G100 silicone rubber insulation part
Fig.4 Test sample of G100 silicone rubber insulation part
技术参数测量范围
电压测试区间1~1 000 V
电流测试区间

输入内阻为10 kΩ时,0.1~1 mA;

输入内阻为1 MΩ时,1~100 nA

电阻测试区间1×105~1×1013 Ω
电压精度

电压≥10 V时,(1%±1) V;

电压<10 V时,(10%±0.1) V

电流10 mA
电阻精度

电压≥10 V且电流>10 nA时,±2%;

电压<10 V且电流≤10 nA时,±5%

测试速度

快速:测量间隔≤30 ms;

慢速:测量间隔≤60 ms

Table 2 Technical parameters of insulation resistance tester
Fig.5 Performance degradation test results of G100 silicone rubber insulation part
待估参数估计值待估参数估计值
r0/TΩ1.495μΛCO2-3.98×10-3
σΛCO25.44×102μΛ9.97×104
σΛ3.13×103
Table 3 Estimated parameter values
应力水平组合pAD值
75 ℃,72%0.7620.243
65 ℃,96%0.5820.298
55 ℃,84%0.0820.663
65 ℃,84%0.3160.422
75 ℃,96%0.1010.624
55 ℃,72%0.6010.290
Table 4 Test results of degradation rate of insulation resistance
应力水平组合R2
75 ℃,72%0.964
65 ℃,96%0.971
55 ℃,84%0.956
65 ℃,84%0.966
75 ℃,96%0.955
55 ℃,72%0.950
Table 5 Determination coefficient of regression model
Fig.6 Surface microtopography of G100 silicone rubber insulation part
Fig.7 Infrared spectrum of G100 silicone rubber before and after aging test
[[1]]   王世娇. 耐环境小圆形电连接器接触可靠性设计与试验评价的研究[D]. 杭州: 浙江理工大学, 2015.
WANG S J. Study on contact reliability design and experimental evaluation of small round electrical connector with environmental resistance[D]. Hangzhou: Zhejiang Sci-Tech University, 2015.
[[2]]   郭鸿杰, 梁淑雅, 陈文华, 等. 线簧丝倾角对线簧孔式电连接器贮存寿命的影响研究[J]. 工程设计学报, 2023, 30(3): 390-398.
GUO H J, LIANG S Y, CHEN W H, et al. Research on influence of wire spring inclination angle on storage life of wire spring hole electrical connector[J]. Chinese Journal of Engineering Design, 2023, 30(3): 390-398.
[[3]]   骆燕燕, 武雄伟, 田亚超, 等. 冲击环境下电连接器接触性能研究[J]. 工程设计学报, 2018, 25(1): 110-117.
LUO Y Y, WU X W, TIAN Y C, et al. Study on the contact performance of electric connector under impact environment[J]. Chinese Journal of Engineering Design, 2018, 25(1): 110-117.
[[4]]   李紫薇. 海洋气候环境下军用电连接器贮存可靠性研究[D]. 绵阳: 西南科技大学, 2024.
LI Z W. Study on storage reliability of military electrical connectors in marine climate environment[D]. Mianyang: Southwest University of Science and Technology, 2024.
[[5]]   王涛. 电连接器用FX-502玻纤增强酚醛树脂绝缘性能演变规律的研究[D]. 杭州: 浙江理工大学, 2021.
WANG T. Study on the evolution of insulation properties of FX-502 glass fiber reinforced phenolic resin for electrical connectors[D]. Hangzhou: Zhejiang Sci-Tech University, 2021.
[[6]]   KLOCH K T, KOZAK P, MLYNIEC A. A review and perspectives on predicting the performance and durability of electrical contacts in automotive applications[J]. Engineering Failure Analysis, 2021, 121: 105143.
[[7]]   钟立强, 李齐备, 郭鸿杰, 等. 高温电连接器绝缘件的失效分析[J]. 工程设计学报, 2025: 32(3):)1-7.
ZHONG L Q, LI Q B, GUO H J,et al. Failure analysis of insulation part for high-temperature electrical connector[J]. Chinese Journal of Engineering Design, 2025, 32(3): 367-372.
[[8]]   陈佳. 空间环境条件下绝缘材料聚醚酰亚胺(PEI)绝缘电阻模型研究[D]. 武汉: 华中科技大学, 2011.
CHEN J. Study on insulation resistance model of polyether imide (PEI) in space environment[D]. Wuhan: Huazhong University of Science and Technology, 2011.
[[9]]   蒋海涛. 环境温度及绝缘材料对电连接器绝缘电阻的影响[J]. 电子技术与软件工程, 2021(10): 222-223.
JIANG H T. Influence of ambient temperature and insulation materials on insulation resistance of electrical connectors[J]. Electronic Technology & Software Engineering, 2021(10): 222-223.
[[10]]   刘鑫雨. 温湿度对电连接器用聚氨酯胶绝缘性能影响规律的研究[D]. 杭州: 浙江理工大学, 2023.
LIU X Y. Study on the influence of temperature and humidity on the insulation performance of polyurethane adhesive for electrical connectors[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
[[11]]   MONTSINGER V M. Loading transformers by temperature[J]. Transactions of the American Institute of Electrical Engineers, 1930, 49(2): 776-790.
[[12]]   ZHANG X X, LI K, XU J. The research of insulation failure on signals transmission in electrical connector[C]//2011 Second International Conference on Mechanic Automation and Control Engineering. Hohhot, Jul. 15, 2011: 1797-1799.
[[13]]   段飞飞, 苏振李, 王田宇, 等. 整机加速贮存试验与寿命快速评价方案设计[J]. 中国工程机械学报, 2024, 22(4): 556-560.
DUAN F F, SU Z L, WANG T Y, et al. Design of accelerated storage test and rapid life evaluation scheme for whole machine[J]. Chinese Journal of Construction Machinery, 2024, 22(4): 556-560.
[[14]]   骆燕燕, 祁侨绅, 王永鹏, 等. 基于组合模型的电连接器剩余寿命预测[J/OL]. 哈尔滨工业大学学报, 2024: 1-11. (2024-08-16). .
LUO Y Y, QI Q S, WANG Y P, et al. Prediction of residual life of electrical connector based on combined model[J/OL]. China Industrial Economics, 2024: 1-11. (2024-08-16). .
[[15]]   ZHANG D D, LIU X, YANG C S, et al. Study on the lifespan prediction of silicon rubber nanocomposites under high humidity and high temperature environment[J]. Science of Advanced Materials, 2020, 12(10): 1469-1475.
[[16]]   CHENG L, MEI H, WANG L, et al. Research on aging evaluation and remaining lifespan prediction of composite insulators in high temperature and humidity regions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 2850-2857.
[[17]]   SMIT N, RAUBENHEIMER L. Bayesian accelerated life testing: a generalized Eyring-Birnbaum-Saunders model[J]. Quality and Reliability Engineering International, 2022, 38(1): 195-210.
[[18]]   邢叔文. 甲基乙烯基硅橡胶的氟化改性及其性能研究[D]. 北京: 北京化工大学, 2024. doi:10.1021/acsomega.4c00015
XING S W. Study on fluorination modification and properties of methyl vinyl silicone rubber[D]. Beijing: Beijing University of Chemical Technology, 2024.
doi: 10.1021/acsomega.4c00015
[[19]]   孙目珍. 电介质物理基础[M]. 广州: 华南理工大学出版社, 2000.
SUN M Z. Fundamentals of dielectric physics[M]. Guangzhou: South China University of Technology Press, 2000.
[[20]]   戴树森. 可靠性试验及其统计分析[M]. 北京: 国防工业出版社, 1983.
DAI S S. Reliability test and its statistical analysis[M]. Beijing: National Defense Industry Press, 1984.
[[21]]   盐见弘. 杨家铿, 江擎孚, 关成勋, 译. 失效物理基础[M]. 北京: 科学出版社, 1982.
YAN J H. Physical basis of failure[M]. Translated by YANG J K, JIANG Q F, GUAN C X. Beijing: Science Press, 1982.
doi: 10.3785/j.issn.1006-754X.2025.05.133
[[21]]   本文链接:
钱萍, 施佳煜, 陈文华, 等. 电连接器用G100硅橡胶绝缘件贮存可靠性建模与验证[J]. 工程设计学报, 2025, 32(4): 514-522. doi:10.3785/j.issn.1006-754X.2025.05.133
doi: 10.3785/j.issn.1006-754X.2025.05.133
[1] Junxing LI,Rui GAO,Ming QIU,Yanke LI,Jingtao LIU,Zhiwei LIU. Reliability life evaluation method of rolling bearing considering dynamic time-varying loads[J]. Chinese Journal of Engineering Design, 2024, 31(4): 420-427.
[2] LU Feng-yi, ZHAO Ke-yuan, XU Ge-ning, QI Qi-song. Reliability assessment of small sample based on multiple source information fusion and fuzzy fault tree[J]. Chinese Journal of Engineering Design, 2017, 24(6): 609-617.