|
|
[1] |
王庆锋,卫炳坤,刘家赫,等.一种数据驱动的旋转机械早期故障检测模型构建和应用研究[J].机械工程学报,2020,56(16):22-32. doi:10.3901/JME.2020.16.022 WANG Qing-feng, WEI Bing-kun, LIU Jia-he, et al. Research on construction and application of data-driven incipient fault detection model for rotating machinery[J]. Journal of Mechanical Engineering, 2020, 56(16): 22-32.
doi: 10.3901/JME.2020.16.022
|
|
|
[2] |
雷亚国,贾峰,孔德同,等.大数据下机械智能故障检测的机遇与挑战[J].机械工程学报,2018,54(5):94-104. doi:10.3901/JME.2018.05.094 LEI Ya-guo, JIA Feng, KONG De-tong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5): 94-104.
doi: 10.3901/JME.2018.05.094
|
|
|
[3] |
刘念.高速经编机梳栉横移振动研究[D].无锡:江南大学,2012:37-44. LIU Nian. Vibration research of shogging motion of the guide bar on high speed warp knitting machine[D]. Wuxi: Jiangnan University, 2012: 37-44.
|
|
|
[4] |
陈是扦,彭志科,周鹏.信号分解及其在机械故障诊断中的应用研究综述[J].机械工程学报,2020,56(17):91-107. doi:10.3901/JME.2020.17.091 CHEN Shi-qian, PENG Zhi-ke, ZHOU Peng. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107.
doi: 10.3901/JME.2020.17.091
|
|
|
[5] |
齐添添,陈尧,何才厚,等.损伤声发射信号小波包神经网络特征识别方法[J].北京邮电大学学报,2021,44(1):124-130. doi:10.13190/j.jbupt.2020-118 QI Tian-tian, CHEN Yao, HE Cai-hou, et al. A wavelet packet neural network feature recognition method for damage acoustic emission signals[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(1): 124-130.
doi: 10.13190/j.jbupt.2020-118
|
|
|
[6] |
王育炜,王红军,韩秋实,等.基于小波包和IGA-BP 神经网络的滚动轴承故障识别方法[J].机床与液压,2020,48(17):184-187. doi:10.3969/j.issn.1001-3881.2020.17.037 WANG Yu-wei, WAGN Hong-jun, HAN Qiu-shi, et al. Rolling bearing fault identification method based on wavelet packet and IGA-BP neural network[J]. Machine Tool and Hydraulics, 2020, 48(17): 184-187.
doi: 10.3969/j.issn.1001-3881.2020.17.037
|
|
|
[7] |
徐晶.基于小波包和迁移学习的飞机燃油泵故障诊断[J].液压与气动,2020(6):183-188. doi:10.11832/j.issn.1000-4858.2020.06.029 XU Jing. Fault diagnosis of aircraft fuel pump based on wavelet packet and transfer learning[J]. Chinese Hydraulics & Pneumatics, 2020(6): 183-188.
doi: 10.11832/j.issn.1000-4858.2020.06.029
|
|
|
[8] |
TAX D M J, DUIN R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11/12/13): 1191-1199. doi:10.1016/s0167-8655(99)00087-2
doi: 10.1016/s0167-8655(99)00087-2
|
|
|
[9] |
赵小强,牟淼.基于变量分块的KDLV-DWSVDD间歇过程故障检测算法研究[J].仪器仪表学报,2021,42(2):244-256. doi:10.19650/j.cnki.cjsi.J2006827 ZHAO Xiao-qiang, MOU Miao. Research on fault detection algorithm of batch process based on KDLV-DWSVDD of variable blocks[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 244-256.
doi: 10.19650/j.cnki.cjsi.J2006827
|
|
|
[10] |
李冠男,胡云鹏,陈焕新,等.基于PCA-SVDD的冷水机组故障检测方法[J].华中科技大学学报(自然科学版),2015,43(8):119-122. doi:10.1016/j.enbuild.2015.12.045 LI Guan-nan, HU Yun-peng, CHEN Huan-xin, et al. PCA-SVDD-based chiller fault detection method[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2015, 43(8): 119-122.
doi: 10.1016/j.enbuild.2015.12.045
|
|
|
[11] |
郝腾飞,陈果.基于小球大间隔方法的机械故障检测[J]. 中国机械工程,2012,23(15):1765-1770. doi:10.3969/j.issn.1004-132X.2012.15.001 HAO Teng-fei, CHEN Guo. Machinery fault detection based on a small sphere and large margin approach[J]. China Mechanical Engineering, 2012, 23(15): 1765-1770.
doi: 10.3969/j.issn.1004-132X.2012.15.001
|
|
|
[12] |
周子松.基于支持向量数据描述的风电机组叶片健康声学诊断方法研究[D].北京:北京邮电大学,2019:26-35. ZHOU Zi-song. Acoustical diagnosis of wind turbine blade based on SVDD[D]. Beijing: Beijing University of Posts and Telecommunications, 2019: 26-35.
|
|
|
[13] |
周建民,徐清瑶,张龙,等.结合小波包奇异谱熵和SVDD的滚动轴承性能退化评估[J].机械科学与技术,2016,35(12):1882-1887. doi:10.1155/2016/3086454 ZHOU Jian-min, XU Qing-yao, ZHANG Long, et al. Assessment method of rolling bearing performance degradation based on wavelet packet singular spectral entropy and SVDD[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1882-1887.
doi: 10.1155/2016/3086454
|
|
|
[14] |
林桐,陈果,滕春禹,等.基于超球优化支持向量数据描述的滚动轴承故障检测[J].振动与冲击,2019,38(2):204-210,225. doi:10.13465/j.cnki.jvs.2019.02.030 LIN Tong, CHEN Guo, TENG Chun-yu, et al. Rolling bearing fault detection based on the hypersphere optimization support vector data description[J]. Journal of Vibration and Shock, 2019, 38(2): 204-210, 225.
doi: 10.13465/j.cnki.jvs.2019.02.030
|
|
|
[15] |
朱朔,白瑞林,刘秦川.基于果蝇优化算法-小波支持向量数据描述的滚动轴承性能退化评估[J].中国机械工程,2018,29(5):602-608. doi:10.3969/j.issn.1004-132X.2018.05.016 ZHU Shuo, BAI Rui-lin, LIU Qin-chuan. Rolling bearing performance degradation assessment based on FOA-WSVDD[J]. China Mechanical Engineering, 2018, 29(5): 602-608.
doi: 10.3969/j.issn.1004-132X.2018.05.016
|
|
|
[16] |
朱启兵,刘杰,应怀樵.基于小波能量和RBF网络的钢水下渣自动检测[J].振动、测试与诊断,2005,25(3): 230-232. doi:10.3969/j.issn.1004-6801.2005.03.016 ZHU Qi-bing, LIU Jie, YING Huai-qiao. Outflow slag at ladle automatic detection based on wavelet-energy and RBF neural network[J]. Journal of Vibration Measurement & Diagnosis, 2005, 25(3): 230-232.
doi: 10.3969/j.issn.1004-6801.2005.03.016
|
|
|
[17] |
NIKOLAOU N G, ANTONIADIS I A. Rolling element bearing fault diagnosis using wavelet packets[J]. NDT & E International, 2002, 35(3): 197-205. doi:10.1016/s0963-8695(01)00044-5
doi: 10.1016/s0963-8695(01)00044-5
|
|
|
[18] |
丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. doi:10.3969/j.issn.1001-0548.2011.01.001 DING Shi-fei, QI Bing-juan, TAN Hong-yan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(1): 2-10.
doi: 10.3969/j.issn.1001-0548.2011.01.001
|
|
|
[19] |
王周春,崔文楠,张涛.基于支持向量机的长波红外目标分类识别算法[J].红外技术,2021,43(2):153-161. WANG Zhou-chun, CUI Wen-nan, ZHANG Tao. Classification and recognition algorithm for long-wave infrared targets based on support vector machine[J]. Infrared Technology, 2021, 43(2): 153-161.
|
|
|