Please wait a minute...
Chinese Journal of Engineering Design  2020, Vol. 27 Issue (2): 269-278    DOI: 10.3785/j.issn.1006-754X.2020.00.019
Whole Machine and System Design     
Design and human-like motion research of service robot for the elderly
LU Jia-wei1,2, ZHANG Qiu-ju1,2, ZHAO Hong-lei1,2
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment &Technology, Wuxi 214122, China
Download: HTML     PDF(4367KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Problems of dyskinesia and cognitive impairment for the elderly are very common. To solve these problems,an easy-to-use and feature-rich service robot for the elderly was designed. To Reduce the operation difficulty of the service robot for the elderly, and optimize the user’s experience, the human-like motion control for the manipulator was achieved by establishing the spatial joint mapping model between human arm and manipulator. Firstly, according to the structure and degree of freedom distribution of human arm and manipulator, the human-machine joint mapping model was initially established. The working space of human arm and manipulator was simulated and compared using the Monte Carlo method. Because of the obvious difference in the spatial structure and degree of freedom distribution between human arm and manipulator, the working space of manipulator was too little, and the manipulator couldn’t imitate the movement of human arm. So, a corresponding improved scheme was proposed, and the human-machine joint mapping model was reestablished. The spatial pose information of the human joints was collected using the Kinect visual sensor, and the human coordinate system with the human left shoulder joint as the origin was established. The spatial vector method and the inverse kinematics method of human arm based on elbow constraint were used to solve the pose changes of human joints. Finally, an experimental platform for service robot for the elderly was established, and the validity and rationality of the improved human-machine joint mapping model and related control algorithm were verified. The experimental results showed that the manipulator could highly revert to the human arm's motion after joint remapping. The research results can be used for reference to improve the robot's interactive ability, and have a significant effect on reducing the robot operation difficulty, which also lays a foundation for the follow-up research on more complex human-like motion robot.



Key wordsservice robot for the elderly      human-machine joint mapping      workspace      Kinect      human-like motion     
Received: 18 July 2019      Published: 28 April 2020
CLC:  TP 242  
Cite this article:

LU Jia-wei, ZHANG Qiu-ju, ZHAO Hong-lei. Design and human-like motion research of service robot for the elderly. Chinese Journal of Engineering Design, 2020, 27(2): 269-278.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2020.00.019     OR     https://www.zjujournals.com/gcsjxb/Y2020/V27/I2/269


助老服务机器人设计及仿人运动研究

针对老年人在日常生活中存在行动不便与认知障碍等问题,设计了一款操作简便、功能丰富的助老服务机器人。为降低助老服务机器人的操作难度,增强用户的体验性,通过建立人体手臂与机器臂的空间关节映射模型,实现了机械臂的仿人运动控制。首先,按照人体手臂与机械臂的结构及自由度分布情况初步建立人机关节映射模型,采用蒙特卡罗方法,对人体手臂和机械臂的工作空间进行仿真分析与对比。然后,针对人体手臂与机械臂在空间结构以及自由度分布上的差异导致的机械臂工作空间较小且无法完全复现人体手臂运动的问题,提出了相应的改进方案,并重新建立了人机关节映射模型;通过Kinect视觉传感器获取人体关节的空间位姿信息,并以人体左肩关节为原点建立人体坐标系,采用空间向量法及基于肘部约束的人臂逆运动学解法求解人体关节的位姿变化。最后,搭建了助老服务机器人仿人运动实验平台,对改进后的人机关节映射模型和相关控制算法的有效性及合理性进行了验证,实验结果表明关节重映射后机械臂能高度还原人体手臂的动作。研究成果对提高机器人的交互能力具有借鉴意义,对降低机器人的操作难度效果明显,也为后续研究更加复杂的仿人运动机器人奠定了基础。


关键词: 助老服务机器人,  人机关节映射,  工作空间,  Kinect,  仿人运动 
[1] 汤雅丹. 家庭服务机器人[J].家庭服务,2016(10):34-35. TANGYa-dan. Home service robot[J]. Domestic Service, 2016(10): 34-35.
[2] 王年文, 苑莹. 老年人陪护机器人服务系统设计研究[J].包装工程,2017,38(18):72-76. doi: 10.19554/j.cnki. 1001-3563.2017.10.020 WANGNian-wen,YUANYing. Serving system design of accompany robot for the elderly [J]. Packaging Engineering, 2017, 38(18): 72-76.
[3] 吴瑞锐, 宋宗峰. 针对老年人的智能陪护系统研究现状[J].科技经济导刊,2019,27(10):29,28. doi: CNKI:SUN:JJKJ.0.2019-10-014 WURui-rui, SONGZong-feng. Research status of intelligent care system for the elderly[J]. Technology Economic Guide, 2019, 27(10): 29, 28.
[4] 王梅, 卢熙昌, 屠大维, 等. 基于人体动作姿态识别的机器人仿人运动[J].机械工程学报,2016,52(21):26-34. doi: 10.3901/JME.2016.21.026 WANGMei, LUXi-chang, TUDa-wei, et al. Humanoid motion of manipulator that based on human-posture recognition[J]. Journal of Mechanical Engineering, 2016, 52(21): 26-34.
[5] ZHANGJ, LINH, ZHAOM. A fast algorithm for hand gesture recognition using relief[C]//2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, Aug. 14-16, 2009. doi:10.1109/FSKD.2009.210
[6] 张博文, 黄攀峰, 刘正雄. 基于Kinect的七自由度空间机械臂体感控制方法[J].载人航天,2019,25(1):85-91. doi: 10.3969/j.issn.1674-5825.2019.01.013 ZHANGBo-wen, HUANGPan-feng, LIUZheng-xiong. Somatosensory control method of 7-DOF space manipulator based on Kinect [J]. Manned Spaceflight, 2019, 25(1): 85-91.
[7] HANJ H, KIMJ H. Consideration about the application of dynamic time warping to human hands behavior recognition for human-robot interaction[M]//Robot Intelligence Technology and Applications 2. Switzerland: Springer, Cham, 2014: 269-277. doi: 10.1007/978-3-319-05582-4_23
[8] 孙鑫, 吴思进. 机器人远程体感控制技术研究[J].电子世界,2017(12):109-112. doi: 10.3969/j.issn.1003-0522. 2017.12.087 SUNXin,WUSi-jin. Research on remote somatosensory control technology for robots[J]. Electronics World, 2017(12): 109-112.
[9] 廖宏建, 曲哲. 基于Kinect体感交互技术的虚拟装配实验系统开发[J].实验技术与管理,2013,30(7):98-102. doi: 10.3969/j.issn.1002-4956.2013.07.026 LIAOHong-jian,QUZhe. Development of virtual assembly experiment system based on somatosensory interaction technology of Kinect [J]. Experimental Technology and Management, 2013, 30(7): 98-102.
[10] 盛国栋,曹其新. 遥操作机器人系统主从控制策略[J].江苏科技大学学报(自然科学版),2013,27(5):493-497. SHEN Guo-dong, CAO Qi-xin, Control strategy of master-slave robot system [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(5): 493-497. doi:10.3969 /j.issn.1673-4807.2013.05.015
[11] NGUYENV V, LEE J H. Full-body imitation of human motions with kinect and heterogeneous kinematic structure of humanoid robot[C]//2012 IEEE/SICE International Symposium on System Integration (SII), Fukuoka, Dec. 16-18, 2012. doi:10.1109/SII.2012. 6427340
[12] 倪涛, 赵泳嘉, 张红彦, 等. 基于Kinect动态手势识别的机械臂实时位姿控制系统[J].农业机械学报,2017, 48(10):417-423,407. doi: 10.6041/j.issn.1000-1298.2017. 10.053 NITao,ZHAOYong-jia,ZHANGHong-yan,et al. Real-time mechanical arm position and pose control system by dynamic hand gesture recognition based on Kinect device [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 417-423, 407.
[13] LIAOW, CRAWFORDR, ROBERTSJ. An analytic approach to converting POE parameters into D-H parameters for serial-link robots[J]. IEEE Robotics & Automation Letters, 2017, 99: 1-10.
[14] 赵京, 宋春雨, 杜滨. 基于人体工程学的仿人机械臂构型[J].机械工程学报,2013,49(11):16-21. doi: 10.3901/ JME.2013.11.016 ZHAOJing,SONGChun-yu,DUBin. Configuration of humanoid robotic arm based on human engineering [J]. Journal of Mechanical Engineering, 2013, 49(11): 16-21.
[15] 戚开诚, 高峰, 张建军, 等. 基于人体关节的七自由度仿人手臂设计与分析[J].组合机床与自动化加工技术,2012(12):1-4,9. doi: 10.3969/j.issn.1001-2265.2012.12. 001 QIKai-cheng,GAOFeng,ZHANGJian-jun,et al. Design of a 7-DOF anthropomorphic arm inspired from the structure of human joints [J]. Modular Machine Tool and Automatic Machining Technology, 2012(12): 1-4, 9.
[16] 周霏, 陈富林, 沈金龙, 等. 基于MATLAB的四自由度机械臂运动学仿真研究[J].机械制造与自动化,2016, 45(1):115-119. doi: 10.3969/j.issn.1671-5276.2016.01. 034 ZHOUFei,CHENFu-lin, SHENJin-long, et al. Study of kinematics simulation of 4-DOF manipulator based on MATLAB [J]. Machine Building & Automation, 2016, 45(1): 115-119.
[17] 曹毅, 李秀娟, 宁祎, 等. 三维机器人工作空间及几何误差分析[J].机械科学与技术,2006,25(12):1458-1461, 1502. doi: 10.3321/j.issn:1003-8728.2006.12.019 CAOYi, LIXiu-juan, NINGWei, et al. Computation and geometrical error analysis of a 3D robot's workspace [J]. Mechanical Science and Technology, 2006, 25(12): 1458-1461, 1502.
[18] SHOTTONJ, FITZGIBBONA, COOKM, et al. Real-time human pose recognition in parts from single depth images[C] //The 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, June 20-25, 2011. doi: 10.1109/CVPR.2011.5995316
[19] 王朝阳, 曲家迪, 张福海, 等. 基于 Kinect 的类人机械臂关节运动直接示教[J].机器人,2017,39(5):697-703. doi: 10.13973/j.cnki.robot.2017.0697 WANGChao-yang, QUJia-di, ZHANGFu-hai, et al. Direct teaching in joint space for humanoid manipulator using Kinect [J]. Robot, 2017, 39(5): 697-703.
[1] YANG Shi-yi, ZHANG Feng-feng, FAN Li-cheng, KUANG Shao-long, SUN Li-ning. Multi target coordinated mechanism parameter optimization method for radiotherapy bed[J]. Chinese Journal of Engineering Design, 2016, 23(3): 256-263.
[2] LI Bao-kun, GUO Yong-cun, WANG Chuan-li, CAO Yi. Orientation workspace and global orientation capability analysis of the Gough-Stewart parallel mechanism[J]. Chinese Journal of Engineering Design, 2015, 22(5): 452-460.
[3] WANG Nan,ZHOU Hai-dong,CUI Guo-hua,XU Feng. Study of kinematic performance of the tea screening plant based on three rotation parallel mechanism[J]. Chinese Journal of Engineering Design, 2014, 21(3): 266-272.
[4] TAN Xing-Qiang, JIA Shu-Yuan, XIE Zhi-Jiang. Optimization design for dynamics performance parameters of 6_PUS parallel robot[J]. Chinese Journal of Engineering Design, 2013, 20(6): 470-475.
[5] YIN Xiao-Qin, ZHAO Guang-Hong, MA Lü-Zhong. Workspace analysis of the end-effectors of Chinese massage robot[J]. Chinese Journal of Engineering Design, 2012, 19(4): 302-306.
[6] XU Zi-Hong, MA Lv-Zhong, MA Xiao-Li, TANG Wei-Xing. Design of milling machine worktable based on parallel manipulators[J]. Chinese Journal of Engineering Design, 2007, 14(4): 295-298.