Please wait a minute...
Chinese Journal of Engineering Design  2018, Vol. 25 Issue (2): 123-130    DOI: 10.3785/j.issn.1006-754X.2018.02.001
    
Position precision compensation method of a micro-manipulation stage based on fuzzy control
HU Jun-feng, LI Yong-ming, ZHENG Chang-hu
School of Mechanical & Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Download: HTML     PDF(3427KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The hysteresis nonlinearity of piezoelectric micro-manipulation stage leads to the decrease of its position accuracy and dynamic performance, and it is hard to establish the accurate hysteresis model. A position accuracy compensation method was adopted based on the fuzzy control strategy to get rid of the dependence on hysteretic model. As for a one-dimensional micro-manipulation stage, the position deviation and deviation variation rate of the stage was used as fuzzy input, and the input voltage change of piezoelectric actuator was used as fuzzy output. A method of developing fuzzy rules was presented based on experiment data of PID control to acquire experience. The fuzzy relationship between the stage input and output by fuzzy reasoning and de-fuzzy process was established, and the adaptive compensation of hysteresis could be realized. In order to illustrate the feasibility of the proposed method, the experimental comparative analysis with PID control was carried out. The position errors were compared when the stage was tracking the sine signals with different frequencies. The experimental results show that the proposed fuzzy control method can make the stage have higher position tracking accuracy and faster tracking speed, and has better adaptability.



Key wordsmicro-manipulation stage      fuzzy control      position precision compensation      hysteresis nonlinearity     
Received: 16 September 2017      Published: 28 April 2018
CLC:  TH703  
  TP274  
Cite this article:

HU Jun-feng, LI Yong-ming, ZHENG Chang-hu. Position precision compensation method of a micro-manipulation stage based on fuzzy control. Chinese Journal of Engineering Design, 2018, 25(2): 123-130.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2018.02.001     OR     https://www.zjujournals.com/gcsjxb/Y2018/V25/I2/123


基于模糊控制的微操作平台位置精度补偿方法

由于压电式微操作平台的迟滞非线性会导致其位置精度和动态性能下降,且难以建立精确的迟滞非线性模型,采用一种基于模糊控制策略的位置精度补偿方法,以摆脱对迟滞模型的依赖。以一种一维压电式微操作平台为对象,以平台的位置偏差与偏差变化率为模糊输入,压电驱动器输入电压变化量为模糊输出,提出采用基于PID控制的实验数据获取经验来制定模糊规则的方法。通过模糊推理和解模糊过程,建立平台输入量与输出量之间的模糊关系,实现了可消除迟滞现象的自适应补偿。为了说明所提出的位置精度补偿方法的可行性,通过实验与PID控制进行比较,分析平台跟踪不同频率正弦信号的位置误差。实验结果表明,所提出的模糊控制方法能使平台具有更高的位置跟踪精度和更快的跟踪速度,并具有较好的自适应性。


关键词: 微操作平台,  模糊控制,  位置精度补偿,  迟滞非线性 

[1] 胡俊峰,徐贵阳,郝亚洲.基于响应面法的微操作平台多目标优化[J].光学精密工程,2015,23(4):1096-1104. HU Jun-feng, XU Gui-yang, HAO Ya-zhou. Multi-objective optimization of a novel micro-manipulation stage based on response surface method[J]. Optics and Precision Engineering, 2015, 23(4):1096-1104.
[2] 胡俊峰,郝亚洲,徐贵阳,等.一种新型微操作平台的精确运动控制[J].机械科学与技术,2016,35(2):216-221. HU Jun-feng, HAO Ya-zhou, XU Gui-yang, et al. Precision motion control of a novel micro-manipulation stage[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(2):216-221.
[3] LIN C J, LIN P T. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model[J]. Computers & Mathematics with Applications, 2012, 64(5):766-787.
[4] JIANG H, JI H, QIU J, et al. A modified prandtl-ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(5):1200-1210.
[5] VOMINH T, TJAHJOWIDODO T, RAMON H, et al. A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model[J]. IEEE/ASME Transaction on Mechatronics, 2011, 16(1):177-186.
[6] CHEN Yuan-sheng, QIU Jin-hao, PALACIOS Jose, et al. Tracking control of piezoelectric stack actuator using modified Prandtl Ishlinskii model[J]. Journal of Intelligent Material Systems and Structures, 2012, 24(6):753-760.
[7] LIU Y J, TONG S. Adaptive fuzzy control for a class of unknown nonlinear dynamical systems[J]. Fuzzy Sets & Systems, 2015, 263(5):49-70.
[8] LI Y, SUI S, TONG S. Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics[J]. IEEE Transactions on Cybernetics, 2017, 47(2):403-414.
[9] 刘章文,李正东,周志强,等.基于模糊控制的自适应光学校正技术[J].物理学报,2016,65(1):1-8. LIU Zhang-wen, LI Zheng-dong, ZHOU Zhi-qiang, et al. Adaptive optics correction technique based on fuzzy control[J]. Acta Physica Sinica, 2016, 65(1):1-8.
[10] 刘经宇,尹文生,朱煜.模糊PID控制在纳米微动台系统中的应用[J].控制工程,2011,18(2):254-257. LIU Jing-yu, YIN Wen-sheng, ZHU Yu. Application of adaptive fuzzy PID controller to nano-scale precision motion stage system[J]. Control Engineering of China, 2011, 18(2):254-257.
[11] 张建雄,孙宝元,王红艳.基于压电陶瓷驱动器(PZT)驱动的二维微动工作台系统及控制方法的研究[J].机床与液压,2006(7):11-13. ZHANG Jian-xiong, SUN Bao-yuan, WANG Hong-yan. Micro-drive positioning system based on PZT and its control[J]. Machine Tool & Hydraulics, 2006(7):11-13.
[12] 胡俊峰,郑昌虎,蔡建阳.基于支持向量机的压电微操作平台非线性特性描述[J].中国机械工程,2016,27(22):3012-3018. HU Jun-feng, ZHENG Chang-hu, CAI Jian-yang. Description of nonlinear characteristics of piezoelectric micro-manipulation stage based on SVM[J]. China Mechanical Engineering, 2016, 27(22):3012-3018.
[13] 石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社,2008:141-148. SHI Xin-min, HAO Zheng-qing. Fuzzy logic control and simulation in MATLAB[M]. Beijing:Tsinghua University Press, 2008:141-148.

[1] DING Shu-yong, ZHANG Zheng, DING Wen-jie, LIN Yong. Optimization design of multi-lane stereo garage and research on vehicle access strategy[J]. Chinese Journal of Engineering Design, 2021, 28(4): 443-449.
[2] WANG Yan, LIU Jing-yu, LI Guang, ZHANG Jia-bo, LIU Xing, ZHOU Xin-xin. Design of navigation control system of AGV based on IGPS and Mecanum wheel[J]. Chinese Journal of Engineering Design, 2020, 27(5): 662-670.
[3] YUAN Kai, LIU Yan-jun, SUN Jing-yu, LUO Xing. Research on control of underwater manipulator based on fuzzy RBF neural network[J]. Chinese Journal of Engineering Design, 2019, 26(6): 675-682.
[4] DUAN Zhi-qiang, GUO Yan-qing, WANG Long. Research on high precision control of large inertia special turntable[J]. Chinese Journal of Engineering Design, 2019, 26(2): 162-169.
[5] XIE Miao, LIU Zhi-xiang, MAO Jun. Research on control strategy of parking tower hydraulic system and its power-saving technology[J]. Chinese Journal of Engineering Design, 2017, 24(1): 115-120.
[6] LI Fu-gui, LONG Wei, LUO Liang, ZHAN Cong-lai. The application of predictive fuzzy control in the liquefied natural gas peak-shaving system[J]. Chinese Journal of Engineering Design, 2016, 23(1): 95-100.
[7] LIU Zhi-guang, YU Fei, ZHANG Liang, LI Tie-jun, AN Zhan-fa. Force tracking research for robot based on fuzzy adaptive impedance control algorithm[J]. Chinese Journal of Engineering Design, 2015, 22(6): 569-574.
[8] Lv Kuan-zhou1, CHEN Su-xia2, HUANG Quan-zhen1. Flexible manipulator trajectory tracking and vibration fuzzy control[J]. Chinese Journal of Engineering Design, 2015, 22(1): 78-83.
[9] LEI Fei,YANG Hong-bo. Research on a bandwidth-limited active control system for commercial vehicle cab suspension based on the fuzzy theory[J]. Chinese Journal of Engineering Design, 2014, 21(1): 32-37.
[10] WAN Xiao-Feng, LEI Ji-Tang, YI Qi-Jun, JIA Jin-Xue, ZHANG Yan-Fei, DING Mao. Clutch engaging control of AMT for starting based on speed feedback[J]. Chinese Journal of Engineering Design, 2013, 20(5): 441-445.
[11] GU Xing, ZHONG Ming, YAO Yu-Feng. Position control for sampling arm based on self-adapting fuzzy-PID[J]. Chinese Journal of Engineering Design, 2012, 19(5): 385-390.
[12] GUO Kong-Hui, SUI Ji-Kui, SONG Xiao-Lin, GUO Yao-Hua, XUE Bing. Analysis of fuzzy sky hook semi active control method for high speed railway vehicle lateral damper[J]. Chinese Journal of Engineering Design, 2012, 19(3): 174-181.
[13] WANG Lin-Lin, HU Hui-Yi, TIAN Hui-Yi, TANG Xing-Lun. Application of selfadaptive fuzzy control on the automatic verticality control of rotary drilling rig[J]. Chinese Journal of Engineering Design, 2011, 18(4): 298-302.
[14] HUANG Qiang, DING Zhi-Hua, WU Chong-Jun, LIU Xin. Fuzzy control with heterogeneous distribution membership function for
fluctuation in fuel pressure
[J]. Chinese Journal of Engineering Design, 2007, 14(6): 478-481.
[15] FENG Hao, HUA Liang, ZHANG Jian-Sheng, WANG Wan-Liang. Auto-detecting device of dial gauge based on ultrasonic motor[J]. Chinese Journal of Engineering Design, 2006, 13(3): 154-161.