Please wait a minute...
Chinese Journal of Engineering Design  2016, Vol. 23 Issue (5): 497-500,512    DOI: 10.3785/j.issn.1006-754X.2016.05.013
    
Research for high-precision feed system based on 3D printer of FDM
SI Guo-bin, WANG Chun-xia, JIN Xiao-feng
College of Mechanical and Electrical Engineering, Jiaozuo University, Jiaozuo 454003, China
Download: HTML     PDF(945KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve accuracy and quality of print moldings, high-precision feed system based on 3D printer of FDM and the implement method is improved. This system used IRF530N power tube, heating pipe and PWM as a Heating Module; Pt100 platinum thermistor, differential amplifier circuit and PID Algorithm as a Temperature Measuring and Controlling Module. It not only simplified the calculation of scale changes, but also reduced the influence of the measurement of resistance drift. Based on feeding control module of the stepping motor, some measures for reducing the phenomenon of the stepper motor which losed step were given. The realization of constant temperature control of 180-250℃ range, ±1℃ accuracy can guarantee the constant temperature and high precision feeding of 3D printer of FDM. It can also be used to control the humidity, pressure, displacement and angle and other physical quantities.



Key words3D printer      PID      PWM      thermostatical control     
Received: 09 March 2016      Published: 28 October 2016
CLC:  TP272  
Cite this article:

SI Guo-bin, WANG Chun-xia, JIN Xiao-feng. Research for high-precision feed system based on 3D printer of FDM. Chinese Journal of Engineering Design, 2016, 23(5): 497-500,512.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2016.05.013     OR     https://www.zjujournals.com/gcsjxb/Y2016/V23/I5/497


FDM型3D打印机的高精度进料系统研究

为了提高打印成型件的精度和质量,对FDM型3D打印机进料系统及其具体实现方法进行了改进.系统采用功率管IRF530N、加热管和PWM组成加热模块,采用铂热电阻Pt100、差动放大电路和PID算法组成温度测控模块.既简化了标度变化的计算量,又降低了电阻值温漂对测量结果的影响.针对基于步进电机结构的送料控制模块,给出了减少步进电机失步的措施.系统实现了180~250℃,±1℃精度的恒温控制,为FDM型3D打印机系统的恒温和高精度进料提供了保障,并且在简单调整后,还可对湿度、压力、位移和角度等物理量进行控制.


关键词: 3D打印机,  PID,  PWM,  恒温控制 

[1] 刘媛媛,张付华,陈伟华. 面向3D打印复合工艺的生物CAD/CAM系统及试验研究[J].机械工程学报,2014,50(15):147-153. LIU Yuan-yuan, ZHANG Fu-hua, CHEN Wei-hua. CAD/CAM system and experimental study of biological 3D printing composite process[J].Journal of Mechanical Engineering, 2014, 50(15):147-153.
[2] 王海军,黄卫东. 矿机易损设备3D打印修复技术的应用初探[J].煤炭工程,2014,46(12):72-74. WANG Hai-jun, HUANG Wei-dong. Discussion on application of 3D printing and repair technology to easily worn equipment of mine machinery[J].Coal Engineering, 2014, 46(12):72-74.
[3] 谭秀腾,郭小定,李小龙. 基于ARM的桌面型3D打印机控制系统设计[J]. 应用科技, 2014,41(5):57-61. TAN Xiu-teng,GUO Xiao-ding,LI Xiao-long. Design of desktop 3D printer control system based on ARM[J]. Applied Science and Technology, 2014, 41(5):57-61.
[4] 阴贺生,赵文豪,宋杰,等. 基于三臂并联结构的桌面3D打印机[J]. 机械, 2015, 42(2): 36-40. YIN He-sheng, ZHAO Wen-hao, SONG Jie, et al. A desktop 3D printer based on delta structure[J]. Machinery, 2015, 42(2): 36-40.
[5] 严长城,应贵平.基于PT100铂热电阻的高精度测温系统的设计[J].机电工程技术,2015,44(3):71-74. YAN Chang-cheng, YING Gui-ping. The design of a temperature collection system with high precision based on PT100[J].Mechanical & Electrical Engineering Technology, 2015, 44(3):71-74.
[6] 赵宇佳,姜汉钧,张羊,等. 一种超低功耗高精度温度传感器芯片设计[J].微电子学与计算机,2015,12(1):40-43. ZHAO Yu-jia, JIANG Han-jun, ZHANG Yang, et al. A novel ultra-low power temperature sensor IC with high precision[J].Microelectronics & Computer, 2015,12(1):40-43.
[7] 张军. 基于ARM的高精度PID温度控制器[J].仪表技术与传感器,2013,50(10):65-66. ZHANG Jun. ARM-based high-precision PID temperature controller[J].Instrument Technique and Sensor, 2013, 50(10):65-66.
[8] 闫兵,马琰. 单螺杆挤出机温度时变性与非线性控制的解决方法[J].计算机测量与控制,2014,22(4):1076-1078. YAN Bing, MA Yan. Single screw extruder temperature time-varying and non-linear control solution[J]. Computer Measurement & Control, 2014, 22(4):1076-1078.
[9] 马洪涛. 基于PID的波峰焊温度控制研究[J].加热热工艺,2013,42(9):205-207. MA Hong-tao. Temperature control of wave soldering based on PID technology[J].Hot Working Technology, 2013, 42(9):205-207.
[10] 谭宝成,康祖清.模糊PID算法在定型机温控系统上的应用[J].西安工业大学学报,2012,32(11):895-898. TAN Bao-cheng, KANG Zu-qing. Application of fuzzy-PID to boarding machine temperature control system[J].Journal of Xi'an Technological University, 2012, 32(11):895-898.
[11] 李茂军,刘鼎邦. 步进电机细分驱动电磁转矩分析[J].控制工程,2013,20(2):243-245. LI Mao-jun, LIU Ding-bang. Study on electromagnetic torque of stepping motor subdivided driving[J].Control Engineering of China, 2013, 20(2):243-245.
[12] 李敬一,王会彬.基于PID算法的步进电机位置控制[J].军民两用技术与产品,2015,4(1):55-57. LI Jing-yi, WANG Hui-bin. Position control method based on PID algorithm for stepper motor[J].Dual Use Technologies & Products, 2015, 4(1):55-57.
[13] 孙孔政,徐抒岩,曹小涛,等. 基于矩频曲线的步进电机加减速控制[J].微电机,2014,47(1):81-85. SUN Kong-zheng, XU Shu-yan, CAO Xiao-tao, et al. Speed control of step motor based on torque curve[J].Micromotors, 2014, 47(1):81-85.
[14] 肖汉波.基于EV10AQ190的高速ADC接口设计[J].电子器件,2015,38(3):569-575. XIAO Han-bo. Design of interface circuit for high speed ADC based on EV10AQ190[J]. Chinese Journal of Electron Devices, 2015, 38(3):569-575
[15] 孙建涛,马小兵,陈兵,等.一种基于片同步技术的高速接口电路设计方法[J].测试技术学报,2008,22(5):442-448. SUN Jian-tao, MA Xiao-bing, CHEN Bing, et al. Design of high-speed interface circuits with chipsync technology[J].Journal of Test and Measurement Technology, 2008, 22(5):442-448.

[1] PAN Sheng-hu, LIU Yun-qiang, HU Han, ZHANG Xiao-jun, FENG Yi-fu. Research on 3D printer control system based on multiple nozzles in parallel[J]. Chinese Journal of Engineering Design, 2022, 29(1): 100-106.
[2] WANG Chun-xiang, JI Kang-hui, WANG Yao, LIU Liu. Review of research on segmentation algorithm in rapid prototyping technology[J]. Chinese Journal of Engineering Design, 2021, 28(4): 399-406.
[3] ZHANG Pu, WANG Jun-feng, GAO Yi-cong, ZHANG Xue-jian. Innovative design of box elevator epidemic prevention function integrating AD and TRIZ[J]. Chinese Journal of Engineering Design, 2021, 28(3): 305-311.
[4] WANG Chao, SUN Wen-xu, MA Xiao-jing, CHEN Ji-yang, LUAN Yi-zhong, MA Si-le. Temperature control system of HVPE growth equipment based on fuzzy control[J]. Chinese Journal of Engineering Design, 2020, 27(6): 765-770.
[5] REN Wen, LAI Sen-cai. Design of self-boosting energy-saving control circuit for piezoelectric jacquard warp knitting machine[J]. Chinese Journal of Engineering Design, 2020, 27(3): 326-331.
[6] ZHENG Hua-lin, YANG Shun-bo, PAN Sheng-hu, WANG Chao. Research on control system of fixed length cutting and automatic layout for flap discs[J]. Chinese Journal of Engineering Design, 2019, 26(4): 461-468.
[7] CHEN Jing, HOU Wei, ZHOU Yi-bo, WANG Xiu-zhuan, CHU Song-lin. Rapid research and development of complex components in aero-engine enabled by additive manufacturing[J]. Chinese Journal of Engineering Design, 2019, 26(2): 123-132.
[8] WANG Li, ZHANG Shi-bing. Research on temperature control system of hot melt glue machine based on CPSO-BP neural network-PID[J]. Chinese Journal of Engineering Design, 2017, 24(5): 588-594.
[9] CHEN Kui, NIU Yan-jie, LI Ge-qiang, XU Li-ping, GUO Bing-jing. Research on synchronous control of shield propulsion system based on single neuron PID[J]. Chinese Journal of Engineering Design, 2017, 24(3): 330-336.
[10] PAN Chun-rong, XU Hua. Design of X-type unmanned quadrotor based on STM32[J]. Chinese Journal of Engineering Design, 2017, 24(2): 196-202,210.
[11] WANG Ai-guo, CHEN Jian-wei. Simulation for control system of 3-RPS parallel mechanism based on MATLAB[J]. Chinese Journal of Engineering Design, 2016, 23(2): 172-180.
[12] YANG Qian-ming, KONG Ling-qi, LI Jian, WANG Shi-gang, GUO Jian-wei. Modeling and simulation of synchronous speed control system about electric-hydraulic proportional motor[J]. Chinese Journal of Engineering Design, 2015, 22(4): 330-336.
[13] XIE Miao, LIU Zhi-xiang, MAO Jun. Multi-cylinder synchronous control method for advanced support of roadway support equipment[J]. Chinese Journal of Engineering Design, 2015, 22(2): 193-200.
[14] LIU Wei1,2, CAO Guozhong1,2, GUO Debin3, XING Xinjin2,4. Research on rapid response design based on multiple bionic[J]. Chinese Journal of Engineering Design, 2015, 22(1): 1-10.
[15] CHEN Yong-liang, LIU Pu, LIU Yu-kun. Adaptable architecture design of underwater friction stitch welding machine[J]. Chinese Journal of Engineering Design, 2014, 21(5): 418-425.