Please wait a minute...
Chinese Journal of Engineering Design  2008, Vol. 15 Issue (3): 182-186    DOI:
    
Study on ultrasonic flaw identification based on complex wavelet transform and support vector machine
 YANG  Ke-Ji1, FANG  Wen-Ping1, QIAO  Hua-Wei1, HUANG  Yi-Chun2
1. Institute of Modern Manufacture Engineering, Zhejiang University, Hangzhou 310027, China; 2. Department. of Information Science and Engineering, Ningbo Institute of Techonology, Zhejiang University, Ningbo 315100, China
Download: HTML     PDF(306KB)
Export: BibTeX | EndNote (RIS)       Supporting Info
Published: 28 June 2008
Cite this article:

YANG Ke-Ji, FANG Wen-Ping, QIAO Hua-Wei, HUANG Yi-Chun. Study on ultrasonic flaw identification based on complex wavelet transform and support vector machine. Chinese Journal of Engineering Design, 2008, 15(3): 182-186.

URL:

https://www.zjujournals.com/gcsjxb/     OR     https://www.zjujournals.com/gcsjxb/Y2008/V15/I3/182


基于复小波变换和支持向量机的缺陷类型识别

针对传统缺陷检测存在的工序繁琐、不易在线实施、准确率低、容易受人为因素影响,以及用人工神经网络对小样本事件进行缺陷类型识别时存在泛化能力差和过学习等问题,提出一种基于复小波变换和支持向量机(SVM)模式识别理论的缺陷类型识别新方法.在利用小波对超声缺陷回波信号进行消噪的基础上,采用复小波变换获得缺陷回波信号的包络并提取其特征参数,构成输入特征向量后运用支持向量机进行分类.实验结果表明,该方法具有识别准确率高、泛化能力强、容易实现在线处理等优点.

关键词: 复小波变换,  支持向量机,  缺陷类型识别 
null
No related articles found!