Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (6): 780-788    DOI: 10.3785/j.issn.1006-754X.2025.05.131
Theory and Method of Mechanical Design     
Research on vertical interconnect process of multilayer circuits based on piezoelectric inkjet printing technology
Zhicheng LIN1(),Zexian JIA1,Ning GOU2,Yanhui SUN1(),Jingxiang Lü1,Enhuai YIN2,Chao LI2
1.Key Laboratory of Road Construction Technology and Equipment of Ministry of Education, Chang'an University, Xi'an 710064, China
2.Xi'an Ruite 3D Technology Co. , Ltd. , Xi'an 710068, China
Download: HTML     PDF(7013KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigate the application of piezoelectric inkjet printing technology in vertical interconnect processes for multilayer circuits, a composite additive-subtractive forming process for vertical interconnection holes is proposed. This process employed mechanical drilling and laser drilling techniques to create blind holes in interconnection circuits, followed by precise filling of these holes using piezoelectric inkjet printing technology, successfully achieving the fabrication of double-layer and four-layer vertical interconnection circuits. The experimental results showed that the interconnection holes formed by the laser drilling technique exhibited inclined pore walls, with the cured nano-silver ink forming a conical distribution and voids appearing within the filled holes. In contrast, the interconnection holes fabricated by mechanical drilling technique maintained good perpendicularity of pore walls, enabling the cured nano-silver ink to form tight and uniform connections with each circuit layer, free of defects such as voids or pores. All fabricated interconnection samples successfully achieved electrical conductivity between each circuit layer, and the average resistance of each circuit layer was less than 1.70 Ω. The composite additive-subtractive forming process for vertical interconnection holes, which integrates mechanical drilling, laser drilling and piezoelectric inkjet printing technology, provides a viable solution for vertical interconnections between multilayer circuits.



Key wordspiezoelectric inkjet printing      multilayer circuits      interconnection hole      vertical interconnection      composite additive-subtractive forming     
Received: 14 April 2025      Published: 30 December 2025
CLC:  TN 41  
Corresponding Authors: Yanhui SUN     E-mail: 2298946133@qq.com;yhsun@chd.edu.cn
Cite this article:

Zhicheng LIN,Zexian JIA,Ning GOU,Yanhui SUN,Jingxiang Lü,Enhuai YIN,Chao LI. Research on vertical interconnect process of multilayer circuits based on piezoelectric inkjet printing technology. Chinese Journal of Engineering Design, 2025, 32(6): 780-788.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.05.131     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I6/780


基于压电喷墨打印技术的多层电路垂直互连工艺研究

为研究压电喷墨打印技术在多层电路垂直互连工艺中的应用,提出了垂直互连孔增减材复合成形工艺。该工艺分别使用钻削制孔与激光制孔两种技术制作互连电路的盲孔,并引入压电喷墨打印技术进行互连孔的精准填充,成功实现了双层及四层垂直互连电路的制造。实验结果表明:基于激光制孔方式形成的互连孔的孔壁呈倾斜状态,填充的纳米银油墨在固化后呈锥形分布,且孔内出现充填空洞;采用钻削制孔方式制作的互连孔的孔壁垂直度良好,填充的纳米银油墨在固化后与各层电路形成了紧密且均匀的连接,孔内无空洞、气孔等缺陷。实验所制备的互连样件均成功实现了各层电路的互连导通,且各层电路的电阻均值小于1.70 Ω。结合钻削制孔、激光制孔与压电喷墨打印技术的垂直互连孔增减材复合成形工艺,为多层电路的垂直互连提供了一种可行的解决方案。


关键词: 压电喷墨打印,  多层电路,  互连孔,  垂直互连,  增减材复合成形 
Fig.1 Design scheme of interconnection samples
Fig.2 Manufacturing process flow of interconnection sample
打印模式打印参数数值

压电喷墨

(导电层)

喷嘴直径/μm60
波谷/波峰电压/V-37/40
喷墨频率/Hz140
打印速度/(mm/s)7
打印高度/mm2

微笔直写

(介电层)

喷嘴直径/mm0.36
打印速度/(mm/s)10
打印高度/mm0.20
气压/MPa0.32
Table 1 Printing parameters
Fig.3 Laser drilling effect of double-layer interconnection sample
Fig.4 Laser drilling effect of four-layer interconnection sample
Fig.5 Mechanical drilling effect of interconnection samples
Fig.6 Hole filling effect of double-layer interconnection sample
Fig.7 Conductive line printing on the upper layer of interconnection samples and final samples
Fig.8 Resistance measurement results of interconnection samples
Fig.9 Inlaid results of double-layer interconnection sample with laser drilling
Fig.10 Inlaid results of double-layer interconnection sample with mechanical drilling
Fig.11 Inlaid results of four-layer interconnection sample with laser drilling
Fig.12 Inlaid results of four-layer interconnection sample with mechanical drilling
 
[[1]]   GARICH H, GEBHART L, TAYLOR E J, et al. Development and characterization of plating cell geometry for PCB and packaging applications[J]. ECS Transactions, 2007, 3(16): 1-10.
[[2]]   JI L N, GONG Y, YANG Z G. Failure investigation on copper-plated blind vias in PCB[J]. Microelectronics Reliability, 2010, 50(8): 1163-1170.
[[3]]   BERNHARD T, BRANAGAN S, SCHULZ R, et al. The formation of nano-voids in electroless Cu layers[J]. MRS Advances, 2019, 4(41/42): 2231-2240.
[[4]]   NASSAJFAR M N, DEVIATKIN I, LEMINEN V, et al. Alternative materials for printed circuit board production: an environmental perspective[J]. Sustainability, 2021, 13(21): 12126.
[[5]]   TAN H W, CHOONG Y Y C, KUO C N, et al. 3D printed electronics: processes, materials and future trends[J]. Progress in Materials Science, 2022, 127: 100945.
[[6]]   沈诚, 邹平, 康迪, 等. 超声振动透镜辅助激光打孔实验研究[J]. 中国机械工程, 2020, 31(21): 2542-2546.
SHEN C, ZOU P, KANG D, et al. Experimental study on ultrasonic vibration lens assisted laser drilling[J]. China Mechanical Engineering, 2020, 31(21): 2542-2546.
[[7]]   李志明, 王玺, 聂劲松. 飞秒激光打孔硅的孔洞形貌研究[J]. 光子学报, 2017, 46(10): 29-36. doi:10.3788/gzxb20174610.1014004
LI Z M, WANG X, NIE J S. Hole morphology in femtosecond laser drilling of silicon[J]. Acta Photonica Sinica, 2017, 46(10): 29-36.
doi: 10.3788/gzxb20174610.1014004
[[8]]   ALWAIDH A, SHARP M, FRENCH P. Laser processing of rigid and flexible PCBs[J]. Optics and Lasers in Engineering, 2014, 58: 109-113.
[[9]]   DING C F, LEE M S, LI K M. Low-cost camera based laser power monitoring and stabilizing for micro-hole drilling[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(9): 1205-1212.
[[10]]   LO T M, YOUNG J S. Improvements of productivity for PCB drilling by laser driller machine[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(8): 1575-1581.
[[11]]   LEE D. Picosecond IR pulsed laser drilling of copper-coated glass/epoxy composite[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(12): 2066-2072.
[[12]]   牟娟, 陈燕, 徐九华, 等. 钎焊套料钻钻削碳纤维增强复合材料层合板出口撕裂缺陷的成因分析[J]. 中国机械工程, 2013, 24(20): 2699-2704.
MU J, CHEN Y, XU J H, et al. Analysis on cracking at exit of hole drilled in carbon fiber reinforced plastics laminate with brazed diamond core drill[J]. China Mechanical Engineering, 2013, 24(20): 2699-2704.
[[13]]   SHI H Y, LIU X W, LOU Y. Materials and micro drilling of high frequency and high speed printed circuit board: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1): 827-841.
[[14]]   LIN D T, WANG C Y, FU L Y, et al. Cryogenic auxiliary drilling of printed circuit boards[J]. Circuit World, 2019, 45(4): 279-286.
[[15]]   XU B, FENG X K, WU X Y, et al. Micro-EDM-assisted machining micro-holes in printed circuit board[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(3): 1191-1201.
[[16]]   ZHENG X H, DONG D P, HUANG L X, et al. Research on fixture hole drilling quality of printed circuit board[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(4): 525-534.
[[17]]   KIM S, SHAMIM A, GEORGIADIS A, et al. Fabrication of fully inkjet-printed vias and SIW structures on thick polymer substrates[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(3): 486-496.
[[18]]   KHORRAMDEL B, MäNTYSALO M. Fabrication and electrical characterization of partially metallized vias fabricated by inkjet[J]. Journal of Micromechanics and Microengineering, 2016, 26(4): 045017.
[[19]]   BACH H L, YU Z C, LETZ S, et al. Vias in DBC substrates for embedded power modules[C]//10th International Conference on Integrated Power Electronics Systems. Stuttgart, Mar. 20-22, 2018.
[[20]]   CHEN S T, CHENG Y S, CHANG Y H, et al. Activation of amino-based monolayers for electroless metallization of high-aspect-ratio through-silicon vias by using a simple ultrasonic-assisted plating solution[J]. Applied Surface Science, 2018, 440: 209-216.
[[21]]   C. H R, KOTHURU A, SINGH A P, et al. Plasma treatment and copper metallization for reliable plated-through-holes in microwave PCBs for space electronic packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(11): 1921-1928.
[[22]]   GRIGORYAN N S, SAVITSKAYA S A, ASNIS N A, et al. Surface preparation before chemical copper plating of holes in printed circuit boards. Part I[J]. International Journal of Corrosion and Scale Inhibition, 2022, 11(4): 1593-1603.
[[23]]   XIANG J, WANG C, CHEN Y M, et al. Numerical simulation and experiments to improve throwing power for practical PCB through-holes plating[J]. Circuit World, 2019, 45(4): 221-230.
No related articles found!