Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (1): 121-131    DOI: 10.3785/j.issn.1006-754X.2025.04.173
Optimization Design     
Experimental study on heat transfer performance of heating pipeline of heavy-duty diesel engine's lubricant tank under extreme cold condition
Zengxin QIAO1(),Xiaoxia SUN2,3,Lili SHEN2,Siyu ZHENG1,Mingshan WEI1,4()
1.School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2.China North Vehicle Research Institute, Beijing 100072, China
3.Chinese Scholar Tree Ridge State Key Laboratory, Beijing 100072, China
4.School of Mechanical and Electrical Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
Download: HTML     PDF(5218KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the heat transfer performance of heating pipeline of a heavy-duty diesel engine's lubricant tank during the preheating stage under extremely cold conditions, a test platform for heat transfer performance of the heating pipeline of lubricant tank was constructed. The temperature variation law of the lubricant in the tank during the preheating process was studied, the working parameters such as coolant inlet temperature, volume flow rate and lubricant initial temperature were adjusted, and the effects of different working conditions on the lubricant temperature variation were analyzed. The test results showed that when the lubricant initial temperature was -50 ℃, its high viscosity led to a very uneven temperature distribution inside the tank during preheating with only a few temperature measuring points showing a significant increase. Increasing the inlet temperature and volume flow rate of the coolant both increased the average heat transfer power, especially the increase of coolant inlet temperature had a more significant effect on the increase of average heat transfer power. When the lubricant initial temperature to -40, -30 and -20 °C respectively, the average heat transfer power increased first and then decreased, and when the lubricant initial temperature was -40 ℃, the average heat transfer power was maximum. The research results provide a reference for optimizing the lubricant preheating strategy and improving the structure of heating pipeline of the lubricant tank.



Key wordsextreme cold condition      cold start      oil preheating      viscosity     
Received: 11 October 2024      Published: 04 March 2025
CLC:  TK 427  
Corresponding Authors: Mingshan WEI     E-mail: 3120220486@bit.edu.cn;mswei@bit.edu.cn
Cite this article:

Zengxin QIAO,Xiaoxia SUN,Lili SHEN,Siyu ZHENG,Mingshan WEI. Experimental study on heat transfer performance of heating pipeline of heavy-duty diesel engine's lubricant tank under extreme cold condition. Chinese Journal of Engineering Design, 2025, 32(1): 121-131.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.173     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I1/121


极寒条件下重型柴油机润滑油箱加热管路传热性能试验研究

为了探究极寒条件下某款重型柴油机润滑油箱加热管路在预热阶段的传热性能,搭建了润滑油箱加热管路传热性能试验平台。研究了在润滑油预热过程中油箱内润滑油的温度变化规律,并调整冷却液进口温度、体积流量和润滑油初始温度等工况参数,分析不同工况对润滑油温度变化的影响。试验结果表明:当润滑油初始温度为-50 ℃时,其高黏度特性使得在预热过程中油箱内的温度分布十分不均匀,只有较少测温点的温度上升明显;提高冷却液进口温度和体积流量都会增大平均换热功率,特别是冷却液进口温度的提高对增大平均换热功率具有更加显著的作用;提高润滑油初始温度分别至-40、-30、-20 ℃,则平均换热功率呈先增大后减小的趋势,当润滑油初始温度为-40 ℃时,平均换热功率最大。研究结果为优化润滑油预热策略、改进润滑油箱加热管路的结构提供了参考。


关键词: 极寒条件,  冷起动,  润滑油预热,  黏度 
Fig.1 Lubricant and coolant for testing
Fig.2 Physical properties of lubricant
Fig.3 Test platform for heat transfer performance of heating pipeline of lubricant tank
Fig.4 Structure of lubricant tank
Fig.5 Structure of heating pipeline
材料

比热容/

[J/(kg?K)]

密度/

(kg/m3)

导热系数/

[W/(m?K)]

PVC9001 3800.16
紫铜3858 933401
Table 1 Main physical parameters of PVC and red copper
Fig.6 Setting of temperature measuring points
Fig.7 Variation curves of lubricant temperature at each temperature measuring point under standard heating condition
Fig.8 CD 5W-40 lubricant condition at -50 °C
Fig.9 CD 5W-40 lubricant conditions under different heating time
Fig.10 Temperature variation curves of T5 and T9 points under different coolant inlet temperatures
Fig.11 Temperature variation curves of T5 and T9 points under different coolant volume flow rates
Fig.12 Temperature variation curves of T5 and T9 points under different lubricant initial temperatures
Fig.13 Variation curves of heat transfer power and cumulative heat transfer capacity with time under different coolant inlet temperatures
Fig.14 Variation curves of heat transfer power and cumulative heat transfer capacity with time under different coolant volume flow rates
Fig.15 Variation curves of heat transfer power and cumulative heat transfer capacity with time under different lubricant initial temperatures
Fig.16 Effect of coolant inlet temperature on average heat transfer power
Fig.17 Effect of coolant volume flow rate on average heat transfer power
Fig.18 Effect of lubricant initial temperature on average heat transfer power
[1]   MENG Z W, BAO Z Q, WU D G, et al. Emission characteristics and microstructural changes of particulate matter from diesel engine after catalyst preheating under cold start conditions[J]. Process Safety and Environmental Protection, 2024, 184: 1389-1399.
[2]   董文龙, 万明定, 王正江, 等. -43℃下多次喷射对柴油机冷起动特性的影响[J]. 内燃机工程, 2023, 44(5): 8-15.
DONG W L, WAN M D, WANG Z J, et al. Effects of multiple injection on cold start characteristics of a diesel engine at -43 ℃[J]. Chinese Internal Combustion Engine Engineering, 2023, 44(5): 8-15.
[3]   王晓宇, 王正江, 贾丹丹, 等. 极寒条件下含氧燃料对柴油机冷起动特性的影响[J]. 内燃机学报, 2024, 42(1): 18-25.
WANG X Y, WANG Z J, JIA D D, et al. Effects of oxygenated fuels on cold start characteristics of diesel engines under extreme cold conditions[J]. Transactions of CSICE, 2024, 42(1): 18-25.
[4]   夏旭, 张众杰, 刘伍权, 等. 高寒环境下柴油机冷启动辅助措施综述[J]. 军事交通学报, 2023, 2(3): 11-15.
XIA X, ZHANG Z J, LIU W Q, et al. Summary of auxiliary measures for cold start of diesel engine in cold environment[J]. Journal of Military Transportation, 2023, 2(3): 11-15.
[5]   邢俊文, 张更云, 姚新民, 等. 车用燃气轮机极寒高原环境起动与工作优势分析[J]. 兵工学报, 2023, 44(1): 214-221.
XING J W, ZHANG G Y, YAO X M, et al. Analysis of starting and operating advantages of vehicular gas turbine in extremely cold plateau environment[J]. Acta Armamentarii, 2023, 44(1): 214-221.
[6]   娄洪利, 崔鹏飞, 王巍. 柴油机低温冷起动预热方法的特点及选择[J]. 科学技术创新, 2017(20): 79-80.
LOU H L, CUI P F, WANG W. Characteristics and selection of preheating methods for low temperature cold start of diesel engine[J]. Scientific and Technological Innovation, 2017(20): 79-80.
[7]   岳玉嵩, 吴玉峰, 杨乃锋, 等. 某装甲车辆加温系统热量匹配分析[J]. 机械工程师, 2019(11): 134-136.
YUE Y S, WU Y F, YANG N F, et al. Thermal matching analysis of an armored vehicle heating system[J]. Mechanical Engineer, 2019(11): 134-136.
[8]   曹智焜, 吴晗, 张树纯, 等. 重型柴油机低温起动及暖机过程的颗粒排放特性[J]. 兵工学报, 2024, 45(8): 2851-2862.
CAO Z K, WU H, ZHANG S C, et al. Particle emission characteristics of heavy diesel engine during low-temperature star-up and warm-up[J]. Acta Armamentarii, 2024, 45(8): 2851-2862.
[9]   吕恩雨, 余磊, 朱波, 等. 低温环境下柴油机冷起动性能试验研究[J]. 内燃机与动力装置, 2024, 41(1): 23-29.
LÜ E Y, YU L, ZHU B, et al. Experimental study on low-temperature cold start performance of a diesel engine[J]. Internal Combustion Engine & Powerplant, 2024, 41(1): 23-29.
[10]   王捧, 任正敏, 秦彪, 等. 预热策略对柴电混合动力低温冷起动的影响[J]. 内燃机学报, 2023, 41(6): 507-514.
WANG P, REN Z M, QIN B, et al. Influence of preheating strategy on low-temperature cold start of a diesel-electric hybrid[J]. Transactions of CSICE, 2023, 41(6): 507-514.
[11]   KODATE S V, YADAV A K, KUMAR G N. Combustion, performance and emission analysis of preheated KOME biodiesel as an alternate fuel for a diesel engine[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2335-2345.
[12]   VIJAY V S, GONSALVIS J. Effect of fuel intake temperature on performance and emission of diesel engine[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1065(1): 012024.
[13]   KODATE S V, RAJU P S, YADAV A K, et al. Effect of fuel preheating on performance, emission and combustion characteristics of a diesel engine fuelled with Vateria indica methyl ester blends at various loads[J]. Journal of Environmental Management, 2022, 304: 114284.
[14]   ZHAO Y, YOU Y, LIU H B, et al. Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process[J]. Energy, 2018, 157: 690-706.
[15]   于亮, 马彪, 陈漫, 等. 润滑油温度对铜基湿式离合器摩擦转矩的影响[J]. 机械工程学报, 2020, 56(20): 155-163. doi:10.3901/jme.2020.20.155
YU L, MA B, CHEN M, et al. Influence of the temperature of lubricating oil on the friction torque of Cu-based wet clutch[J]. Journal of Mechanical Engineering, 2020, 56(20): 155-163.
doi: 10.3901/jme.2020.20.155
[16]   ESFE M H, EFTEKHARI S ALI, MOHAMMAD SAJADI S, et al. Determining the best structure for an artificial neural network to model the dynamic viscosity of MWCNT-ZnO (25∶75)/SAE 10W40 oil nano-lubricant[J]. Materials Today Communications, 2024, 38: 107607.
[17]   李昂, 郝丽春, 杨鹤, 等. 合成基润滑油聚α-烯烃低温摩擦润滑性能研究[J]. 润滑与密封, 2024, 49(5): 191-196.
LI A, HAO L C, YANG H, et al. Study on the lubrication properties of synthesis oil PAO at low temperature[J]. Lubrication Engineering, 2024, 49(5): 191-196.
[18]   温诗铸, 黄平. 摩擦学原理[M]. 3版. 北京: 清华大学出版社, 2008.
WEN S Z, HUANG P. Principles of tribology[M]. 3th ed. Beijing: Tsinghua University Press, 2008.
[19]   王延臻, 劳永新. 润滑油的低温流变学进展[J]. 润滑油, 1997, 12(5): 55-58.
WANG Y Z, LAO Y X. Advances in low temperature rheology of lubricating oils[J]. Lubricating Oil, 1997, 12(5): 55-58.
[20]   姜旭峰, 宗营, 邱贞慧. 润滑油低温流动性的影响因素和改善方法[J]. 合成润滑材料, 2019, 46(3): 13-16.
JIANG X F, ZONG Y, QIU Z H. Influencing factors and improvement methods on low-temperature fluidity of lubricants[J]. Synthetic Lubricants, 2019, 46(3): 13-16.
[21]   熊万里, 阳雪兵, 吕浪, 等. 液体动静压电主轴关键技术综述[J]. 机械工程学报, 2009, 45(9): 1-18. doi:10.3901/jme.2009.09.001
XIONG W L, YANG X B, LV L, et al. Review on key technology of hydrodynamic and hydrostatic high-frequency motor spindles[J]. Journal of Mechanical Engineering, 2009, 45(9): 1-18.
doi: 10.3901/jme.2009.09.001
[22]   张心爱. 基础润滑油摩擦学性能及其流变特性分析[D]. 重庆: 重庆大学, 2016. doi:10.3934/amc.2015.9.9
ZHANG X A. Analysis of tribological properties and rheological properties of basic lubricating oil[D]. Chongqing: Chongqing University, 2016.
doi: 10.3934/amc.2015.9.9
[1] ZHANG Yuan, PENG Zhen-hua, GAO Ding-xiang, REN Hai-tao, TANG Yi-xin. Design and mixing performance research of core tube heavy oil mixing and diluting mixer[J]. Chinese Journal of Engineering Design, 2018, 25(5): 510-517.
[2] ZHANG Yan, RUI Yan-nian, ZHOU Hong-wei, TONG Yu-wu. Optimization design of shaft less screw conveyor mechanism for high viscosity and large specific gravity materials based on PSO[J]. Chinese Journal of Engineering Design, 2014, 21(2): 161-165.
[3] FENG Wei, HE Shi-Zhong. Testing study on relationship of characteristic information in tribological system[J]. Chinese Journal of Engineering Design, 2011, 18(4): 288-292.
[4] BAI Shao-Xian,HUANG Ping,MENG Yong-Gang,WEN Shi-Zhu. Experimental study of influence on electric double layer on aqueous lubrication[J]. Chinese Journal of Engineering Design, 2007, 14(3): 253-261.