Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (2): 141-150    DOI: 10.3785/j.issn.1006-754X.2025.04.168
Theory and Method of Mechanical Design     
Uncertainty analysis method for mechanical system based on multi-cluster ellipsoidal model
Zhengyan MA1,2(),Heng OUYANG1,2(),Zhijie HAO1,2,Shuo GAO1,2,Baohui LIU1,2
1.School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
2.State Key Laboratory of Intelligent Power Distribution Equipment and System, Hebei University of Technology, Tianjin 300401, China
Download: HTML     PDF(1879KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Multi-source uncertainties, such as random loads, manufacturing errors, and installation inaccuracies, influence mechanical system during the service processes, resulting in the deviation of system response, which seriously affects the operation stability and system reliability. In practical engineering, it is very difficult to collect high-quality data of complex mechanical systems on a large scale. For this reason, the sample size of the obtained data is usually small, and its uncertainty is difficult to quantify using probability models. Furthermore, when mechanical systems operate under certain specific conditions, the data may cluster in certain areas, exhibiting distinct clustering characteristics, which leads to challenges for the uncertainty analysis and measurement of mechanical system under these conditions. To address the above issues, an uncertainty analysis method for mechanical systems based on a multi-cluster ellipsoidal model was proposed to accurately quantify the uncertainties of system parameters with clustering characteristics, so as to achieve the rapid evaluation of system response uncertainty. In order to accurately quantify the small sample data with clustering characteristics, the multi-cluster ellipsoidal model was employed for uncertainty modeling. Based on the parameter interval information, the sensitivity analysis of the mechanical system was conducted to determine the main parameters that affected the performance of the mechanical system. The upper and lower boundaries of the mechanical system response were obtained by using multi-cluster ellipsoidal model and the sequential quadratic programming algorithm to achieve the uncertainty propagation of system parameters. The accuracy and effectiveness of the proposed method were verified through three numerical examples and one radar system engineering example. The research results indicate that the hyper-ellipsoidal clustering method has high computational efficiency and accuracy when addressing the uncertainty of mechanical system performance under limited samples.



Key wordsuncertainty propagation      multi-cluster ellipsoidal model      performance measure approach      sensitivity analysis     
Received: 04 September 2024      Published: 06 May 2025
CLC:  TB 114.3  
Corresponding Authors: Heng OUYANG     E-mail: 202221202078@stu.hebut.edu.cn;ouyangheng@hebut.edu.cn
Cite this article:

Zhengyan MA,Heng OUYANG,Zhijie HAO,Shuo GAO,Baohui LIU. Uncertainty analysis method for mechanical system based on multi-cluster ellipsoidal model. Chinese Journal of Engineering Design, 2025, 32(2): 141-150.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.04.168     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I2/141


基于聚类椭球模型的机械系统不确定性分析方法

机械系统在服役过程中受到随机载荷、制造误差、安装误差等多源不确定性因素影响,导致系统响应常产生偏差,严重影响其运行稳定性与系统可靠性。在实际工程中,大规模、高质量采集复杂机械系统的数据非常困难,获取的数据样本量通常较小,难以通过概率模型描述其不确定性。此外,当机械系统在某些特定条件下运行时,数据可能集中在某些区域,呈现一定的聚类特征,导致该条件下机械系统的不确定性分析与度量存在挑战。为此,提出了一种基于聚类椭球模型的机械系统不确定性分析方法,来准确度量具有聚类特征系统参数的不确定性,实现系统响应不确定性的快速评估。为了准确量化具有聚类特性的小样本数据,采用聚类椭球模型对其进行不确定性建模;根据参数区间信息,开展机械系统敏感性分析,确定了影响机械系统性能的主要参数;结合聚类椭球模型和序列二次规划算法获取机械系统响应的上、下边界,实现了系统参数不确定性传播;通过3个数值算例和1个雷达系统工程算例验证了所提方法的准确性和有效性。研究结果表明,在处理小样本条件下机械系统性能不确定性问题时,超椭球聚类方法具有较高的计算效率和精度。


关键词: 不确定性传播,  聚类椭球模型,  功能度量法,  敏感性分析 
Fig.1 Total volume variation of ellipsoidal model
Fig.2 Schematic diagram of standardization transformation of ellipsoidal model
Fig.3 Comparison of ellipsoidal models under different thresholds in example 4.1
聚类数量/个椭球模型总面积δ1δ2
13.586 1
20.817 63.39
30.594 70.3712.42
40.496 90.202.28
50.449 00.112.04
60.374 00.200.64
Table 1 Total area variation of ellipsoidal model under different numbers of cluster in example 4.1
Fig.4 Scatter plot of sample distribution of uncertain variables in example 4.2
Fig.5 Comparison of ellipsoid models constructed by different methods in example 4.2
方法椭球模型总面积
MEM3.757 7
MVM11.276 7
HECM3.342 9
Table 2 Total area of ellipsoidal model in example 4.2
Fig.6 Uncertainty propagation results in example 4.2
聚类数量/个MVMMEMHECM
17.94×1042.37×1057.94×104
26.63×1042.23×104
32.15×1048.25×103
41.21×1044.96×103
Table 3 Total volume of ellipsoidal model in example 4.3
方法区间边界PMAMCS相对误差/%
MVM上边界330.3851335.49071.52
下边界-900.6652-888.42531.38
MEM上边界318.4564311.69842.16
下边界-628.5203-616.46651.10
HECM上边界226.6837232.70871.95
下边界-545.5398-549.53730.73
Table 4 Uncertainty propagation results in example 4.3
雷达参数数值区间
信号频率/108 Hz[3.0, 10.0]
脉冲宽度/10-3 s[1.0, 2.0]
发射功率/105 W[1.0, 5.0]
发射增益/dB[35.0, 40.0]
接收增益/dB[35.0, 40.0]
综合损耗/dB[40.0, 45.0]
Table 5 Numerical range of radar parameters
雷达参数Sobol’敏感性指标值非概率方差贡献率
信号频率0.471 80.539 7
脉冲宽度0.039 00.032 6
发射功率0.179 40.154 6
发射增益0.110 80.091 0
接收增益0.110 80.091 0
综合损耗0.110 90.091 0
Table 6 Sensitivity analysis results of maximum detection distance of radar
Fig.7 Radar system ellipsoidal models
方法区间边界/mPMAMCS相对误差/%
MEM上边界457 174457 0460.03
下边界257 098257 1100.00
MVM上边界468 395468 3880.00
下边界249 991250 0620.03
HECM上边界455 757455 5050.02
下边界265 133265 1730.06
Table 7 Uncertain propagation results of radar system
[1]   OUYANG H, LIU J, HAN X, et al. Non-probabilistic uncertain inverse problem method considering correlations for structural parameter identification[J]. Structural and Multidisciplinary Optimization, 2021, 64(3): 1327-1342.
[2]   ZHANG D Q, SHEN S S, JIANG C, et al. An advanced mixed-degree cubature formula for reliability analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115521.
[3]   赵子达, 张德权, 欧阳衡, 等. 径向基函数-稀疏多项式混沌展开混合代理模型可靠性分析方法[J]. 机械强度, 2023, 45(5): 1108-1116.
ZHAO Z D, ZHANG D Q, OUYANG H, et al. Reliability analysis on hybrid surrogate model of radial basis function and sparse polynomial chaos expansion[J]. Journal of Mechanical Strength, 2023, 45(5): 1108-1116.
[4]   JIANG C, HAN X, LU G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33/34/35/36): 2528-2546.
[5]   刘浩, 刘杰, 姜潮, 等. 基于凸模型和伪概率分布的不确定性结构响应分析[J]. 固体力学学报, 2015, 36(6): 537-543.
LIU H, LIU J, JIANG C, et al. Uncertainty analysis of structural response based on convex model and pseudo-probability distribution[J]. Chinese Journal of Solid Mechanics, 2015, 36(6): 537-543.
[6]   吕震宙, 冯蕴雯. 结构可靠性问题研究的若干进展[J]. 力学进展, 2000, 30(1): 21-28.
LÜ Z Z, FENG Y W. Advances in structural reliability studies[J]. Advances in Mechanics, 2000, 30(1): 21-28.
[7]   ZHANG D Q, JIA J K, HAN Z H, et al. An efficient uncertainty quantification and propagation method through skewness and kurtosis fitting region[J]. Structural and Multidisciplinary Optimization, 2023, 66(2): 36.
[8]   ZHANG D Q, ZHAO Z D, OUYANG H, et al. An efficient reliability analysis method based on the improved radial basis function neural network[J]. Journal of Mechanical Design, 2023, 145(8): 081705.
[9]   余萌晨, 龙湘云. 基于两阶段主动学习Kriging模型的广义概率区间混合可靠性分析[J]. 机械工程学报, 2022, 58(6): 274-288. doi:10.3901/jme.2022.06.274
YU M C, LONG X Y. Generalized probability and interval hybrid reliability analysis based on two-stage active learning Kriging model[J]. Journal of Mechanical Engineering, 2022, 58(6): 274-288.
doi: 10.3901/jme.2022.06.274
[10]   NI B Y, JIANG C, HAN X. An improved multidimensional parallelepiped non-probabilistic model for structural uncertainty analysis[J]. Applied Mathematical Modelling, 2016, 40(7/8): 4727-4745.
[11]   WANG C, QIU Z P. Interval analysis of steady-state heat convection-diffusion problem with uncertain-but-bounded parameters[J]. International Journal of Heat and Mass Transfer, 2015, 91: 355-362.
[12]   NI B Y, JIANG C. Interval field model and interval finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112713.
[13]   WANG C, MATTHIES H G. Novel interval theory-based parameter identification method for engineering heat transfer systems with epistemic uncertainty[J]. International Journal for Numerical Methods in Engineering, 2018, 115(6): 756-770.
[14]   BEN-HAIM Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 14(4): 227-245.
[15]   ZHU L P, ELISHAKOFF I, STARNES J H. Derivation of multi-dimensional ellipsoidal convex model for experimental data[J]. Mathematical and Computer Modelling, 1996, 24(2): 103-114.
[16]   JIANG C, ZHANG Q F, HAN X, et al. A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model[J]. Acta Mechanica, 2014, 225(2): 383-395.
[17]   王攀, 臧朝平. 改进的平行六面体凸模型识别动力学不确定参数区间的方法[J]. 振动工程学报, 2019, 32(1): 97-106.
WANG P, ZANG C P. Method of identifying dynamic uncertain parameter intervals with improved parallelepiped convex model[J]. Journal of Vibration Engineering, 2019, 32(1): 97-106.
[18]   CAO L X, LIU J, XIE L, et al. Non-probabilistic polygonal convex set model for structural uncertainty quantification[J]. Applied Mathematical Modelling, 2021, 89: 504-518.
[19]   刘杰, 谢凌, 卿宏军, 等. 基于主成分分析的结构不确定性建模与传播研究[J]. 计算力学学报, 2017, 34(4): 411-416.
LIU J, XIE L, QING H J, et al. Structural uncertainty modeling and propagation based on principal component analysis[J]. Chinese Journal of Computational Mechanics, 2017, 34(4): 411-416.
[20]   KANG Z, ZHANG W B. Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 461-489.
[21]   JIANG C, ZHANG Q F, HAN X, et al. Multidimensional parallelepiped model: a new type of non-probabilistic convex model for structural uncertainty analysis[J]. International Journal for Numerical Methods in Engineering, 2015, 103(1): 31-59.
[22]   LI K, LIU H W. Structural reliability analysis by using non-probabilistic multi-cluster ellipsoidal model[J]. Entropy, 2022, 24(9): 1209.
[23]   刘浩, 杨开云, 张德权. 基于聚类椭球模型的不确定性传播分析[J]. 计算力学学报, 2018, 35(4): 431-436.
LIU H, YANG K Y, ZHANG D Q. Uncertain propagation based on the cluster-ellipsoid model[J]. Chinese Journal of Computational Mechanics, 2018, 35(4): 431-436.
[24]   WANG C, MATTHIES H G. A modified parallelepiped model for non-probabilistic uncertainty quantification and propagation analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113209.
[25]   LIU J, YU Z B, ZHANG D Q, et al. Multimodal ellipsoid model for non-probabilistic structural uncertainty quantification and propagation[J]. International Journal of Mechanics and Materials in Design, 2021, 17(3): 633-657.
[26]   PANDA S K, JANA P K. Efficient task scheduling algorithms for heterogeneous multi-cloud environment[J]. The Journal of Supercomputing, 2015, 71(4): 1505-1533.
[27]   LEE H, YOO J H, PARK D. Data clustering method using a modified Gaussian kernel metric and kernel PCA[J]. ETRI Journal, 2014, 36(3): 333-342.
[28]   欧阳衡. 基于相关性分析的结构不确定性传播与计算反求方法研究[D]. 长沙: 湖南大学, 2020: 16-37.
OUYANG H. Research on structural uncertainty propagation and computational inverse methods based on correlation analysis[D]. Changsha: Hunan University, 2020: 16-37.
[29]   OUYANG H, WANG H Y, LIU J, et al. Non-probabilistic sensitivity analysis method for multi-input-multi-output structures considering correlations[J]. International Journal of Mechanical Sciences, 2024, 271: 109123.
[30]   WANG C, QIANG X, FAN H R, et al. Novel data-driven method for non-probabilistic uncertainty analysis of engineering structures based on ellipsoid model[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114889.
[31]   丁鹭飞, 耿富禄, 陈建春. 雷达原理[M]. 4版. 西安: 西安电子科技大学出版社, 2020: 163-167.
DING L F, GENG F L, CHEN J C. Principles of radar[M]. Xi'an: Xidain University Press, 2002: 163-167.
[32]   欧阳衡, 高硕, 王世涛, 等. 基于子区间的雷达探测距离和测距精度分析[J]. 工程设计学报, 2024, 31(3): 332-339.
OUYANG H, GAO S, WANG S T, et al. Analysis of radar detection distance and ranging accuracy based on subinterval[J]. Chinese Journal of Engineering Design, 2024, 31(3): 332-339.
[1] Ze-jun WEN,Xiang-heng MENG,Zhao XIAO,Fan ZHANG. Sensitivity analysis of airfoil aerodynamic characteristics based on NT-net method and Morris method[J]. Chinese Journal of Engineering Design, 2022, 29(4): 438-445.
[2] TAO Xiao-dong, GUO An-fu, LI Hui, HAN Wei, LI Wan-cai, LI Tao. Performance analysis and optimization of disc ditcher based on sensitivity analysis[J]. Chinese Journal of Engineering Design, 2022, 29(1): 59-65.
[3] TAO Xiao-hui, LI Guo-long, XU Kai, LI Chuan-zhen. Sensitivity analysis of geometric error of worm wheel gear grinding machine[J]. Chinese Journal of Engineering Design, 2020, 27(1): 111-120.
[4] DU Yi-Xian, WANG Wei, LI Ran, FU Jun-Jian. Research on sensitivity filtering method for structural topology optimization[J]. Chinese Journal of Engineering Design, 2012, 19(1): 20-24.
[5] QIAN Xue-Yi, WU Shuang. Multi-objective optimization of the non-symmetrical gear agglutinate strength based on elastohydrodynamic lubrication theory[J]. Chinese Journal of Engineering Design, 2010, 17(6): 426-429.
[6] HE Xiang-Dong, ZHANG Yi-Min, WEN Bang-Chun. Stable reliability-based sensitivity design of compressive bar[J]. Chinese Journal of Engineering Design, 2006, 13(5): 295-297.