Please wait a minute...
Chinese Journal of Engineering Design  2025, Vol. 32 Issue (1): 23-31    DOI: 10.3785/j.issn.1006-754X.2025.02.116
Theory and Method of Mechanical Design     
Evaluation model of rock-breaking specific energy for PDC cutter based on fractal characteristics of rock cutting morphology
Wenhao HE1,2(),Xinlong LI1,2,Runqing ZHANG1,2,Li LIU1,2,Huaizhong SHI3(),Zhongwei HUANG3,Chao XIONG3,Zhenliang CHEN4,Hongzhi WU3
1.Beijing Key Laboratory of Oil and Gas Optical Detection Technology, China University of Petroleum (Beijing), Beijing 102249, China
2.Basic Research Center for Energy Interdisciplinary, China University of Petroleum (Beijing), Beijing 102249, China
3.State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
4.Petroleum Engineering Research Institute Co. , Ltd. , Sinopec Group, Beijing 102200, China
Download: HTML     PDF(3020KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

As the exploration center of oil and gas resources in China moves towards deep and ultra-deep layers, the difficulty of oil and gas exploration has been increasing, which can be recognized poor drilling capacity and low rate of penetration resulted from high strength and strong abrasion of deep hard formation rocks. In order to improve the rock-breaking performance of deep hard rock bits, conical cutters are widely used in the design of hybrid-cutters PDC (polycrystalline diamond compact) bits. However, the rock-breaking volume of conical cutter is small, and its cutter arrangement method needs more comprehensive theoretical support. Therefore, taking the rock-breaking specific energy as the objective function, a rock-breaking specific energy evaluation model for the PDC cutter based on the fractal characteristics of rock cutting morphology was established by quantifying the physical parameters such as cutting force and cutting energy consumption of different types of PDC cutters during the rock-breaking process and using the maximum particle size of rock cuttings and fractal dimension of rock cutting particle size. Meanwhile, the rock-breaking performance of conical PDC cutter was investigated by comparing with the conventional planar PDC cutter, and the effects of cutting depth, cutting angle and cutting speed on the rock-breaking performance were analyzed. The results showed that the conical PDC cutter was suitable for rock breaking with large cutting depth and low energy consumption, while the conventional PDC cutter was suitable for rock breaking with high speed and small cutting depth. The cutting angle of two kinds of PDC cutters was recommended to be about 20°. Conical PDC cutters were suitable for arrangement at the central vertex and crown area of the hybrid-cutters PDC bit, while conventional PDC cutters were suitable for encrypted arrangement from the nose to shoulder area of the bit. The research results can provide theoretical basis for revealing the particle size distribution law of rock cuttings generated by PDC cutter breaking rock and the design of hybrid-cutters PDC bits.



Key wordsconical PDC cutter      cutting and breaking rock      fractal dimension      particle size of rock cutting      rock-breaking specific energy     
Received: 01 December 2023      Published: 04 March 2025
CLC:  TE 21  
Corresponding Authors: Huaizhong SHI     E-mail: hwh@cup.edu.cn;shz@cup.edu.cn
Cite this article:

Wenhao HE,Xinlong LI,Runqing ZHANG,Li LIU,Huaizhong SHI,Zhongwei HUANG,Chao XIONG,Zhenliang CHEN,Hongzhi WU. Evaluation model of rock-breaking specific energy for PDC cutter based on fractal characteristics of rock cutting morphology. Chinese Journal of Engineering Design, 2025, 32(1): 23-31.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2025.02.116     OR     https://www.zjujournals.com/gcsjxb/Y2025/V32/I1/23


基于岩屑形貌分形特征的PDC齿破岩比功评估模型

随着我国油气资源探测重心不断向深层、超深层迈进,油气勘探难度不断增大,且深层硬地层岩石强度高及研磨性强,可钻性变差,导致整体机械钻速偏低。为提高深层硬岩的钻头破岩性能,锥形齿被广泛应用于混合布齿PDC(polycrystalline diamond compact,聚晶金刚石复合片)钻头设计,但锥形齿的破岩体积较小,其布齿方法需要更全面的理论支撑。为此,以破岩比功为目标函数,通过明确不同类型PDC齿在切削破岩过程中的切削力与切削能耗等物理参数,利用最大岩屑粒径和岩屑粒径分形维数建立了基于岩屑形貌分形特征的PDC齿破岩比功评估模型。同时,通过与常规平面形PDC齿对比,探究了锥形PDC齿的破岩性能,并分析了切削深度、切削角度与切削速度对PDC齿破岩性能的影响规律。结果表明,锥形PDC齿适用于大切削深度低能耗破岩,而常规PDC齿适用于高速小切削深度破岩,且2种PDC齿的工作角度均推荐为20°左右。锥形PDC齿适合布置在混合布齿PDC钻头的中心顶点和冠顶区域,而常规PDC齿适合加密布置在钻头的鼻部至肩部区域。研究结果可为揭示PDC齿破岩生成的岩屑粒径分布规律和指导混合布齿PDC钻头设计提供理论依据。


关键词: 锥形PDC齿,  切削破岩,  分形维数,  岩屑粒径,  破岩比功 
Fig.1 Rock-breaking mechanics model of PDC cutter cutting with uniform speed
Fig.2 Testing device for PDC cutter cutting and breaking rock
Fig.3 Variation curve of mass fraction of rock cuttings generated by PDC cutter breaking rock with particle size
齿形切削参数水平切削力Fh/N岩屑粒径分形维数Dl最大岩屑粒径lmax/mm总破岩体积VT/cm3岩性相关系数C
深度d/mm角度θ/(°)

速度

v/(mm/s)

常规PDC齿0.3205.0246.602.681.450.0864.53
0.6205.0635.812.641.760.26227.37
0.9205.01 067.252.521.890.54404.26
1.2205.01 589.722.523.090.86486.23
1.5205.02 161.022.525.261.21501.49
0.9105.01 025.102.491.890.57411.40
0.9205.01 065.942.521.880.54402.77
0.9305.01 290.982.651.730.54420.89
0.9205.02.521.91
0.92010.02.492.12
0.92015.02.482.17
0.92020.02.482.20
锥形PDC齿1.0205.01 282.292.672.360.42309.46
1.5205.01 660.662.647.340.75361.11
2.0205.02 115.152.6214.451.12393.77
2.5205.02 645.762.5520.911.65410.14
3.0205.03 236.822.6753.902.37376.95
2.0105.01 650.912.6510.720.79309.46
2.0205.02 115.152.6214.451.12393.77
2.0305.02 516.552.6215.231.02393.77
1.0205.01 290.00
1.02010.01 304.00
1.02015.01 274.00
1.02020.01 292.00
1.02025.01 291.00
Table 1 Key parameters of PDC cutter rock-breaking specific energy evaluation model
齿形参数关键参数拟合公式确定系数r2
常规PDC齿Fh-?628.632?9+1?594.251x1?+13.293?915x2+370.999?04x1-?0.92+0.859?677(x2-?20)20.999 9
Dl2.561?879?1-?0.139?8x1+0.007?85x2-?0.006?665x30.790 4
lmax-?0.407?394+2.984?364?9x10.700 8
C9.732?238?9+397.108?84x1-?110.530?8(x1-?0.9)20.994 5
锥形PDC齿Fh-?623.423?4+934.350?06x1+43.282?1x2+152.242?34x1-?1.833?332-?0.314?206(x1-?1.833?33)21.000 0
Dl2.796?095?2-?0.085?729x1-?0.063?343(x1-?1.833?33)20.908 5
lmax-?15.035?46+12.197?243x1+0.225?426?3x20.983 6
C242.590?57+54.885?017x1+2.261?666?7x2-?0.708?972(x2-?20)20.986 7
Table 2 Fitting results of key parameters of PDC cutter rock-breaking specific energy evaluation model
Fig.4 Fitting results of predicted and measured values of PDC cutter rock-breaking specific energy
Fig.5 Variation law of horizontal cutting force and rock-breaking specific energy of PDC cutters with cutting depth (θ=20°, v=5 mm/s)
Fig.6 Variation law of horizontal cutting force and rock-breaking specific energy of PDC cutters with cutting angle (d=2 mm, v=5 mm/s)
Fig.7 Variation law of horizontal cutting force and rock-breaking specific energy of PDC cutters with cutting speed (d=2 mm, θ=20°)
[1]   刘朝全, 姜学峰, 吴谋远. 2021年国内外油气行业发展报告[M]. 北京: 石油工业出版社, 2022.
LIU C Q, JIANG X F, WU M Y. 2021 domestic and foreign oil and gas industry development report[M]. Beijing: Petroleum Industry Press, 2022.
[2]   李相勇, 王春华, 杨决算, 等. 深部难钻地层提速工具现状及发展趋势[J]. 西部探矿工程, 2018, 30(11): 74, 77.
LI X Y, WANG C H, YANG J S, et al. Current status and development trends of speed boosting tools for deep difficult to drill strata[J]. West-China Exploration Engineering, 2018, 30(11): 74, 77.
[3]   陈小东. 刮切—冲击复合破岩工具技术研究[D]. 重庆:西南大学, 2015.
CHEN X D. Research on the technology of scraping and impact composite rock breaking tools[D]. Chongqing: Southwest University, 2015.
[4]   陈子贺. 松辽火山岩地层PDC钻头切削齿破岩机理研究[D]. 大庆: 东北石油大学, 2020.
CHEN Z H. Rock breaking mechanism of PDC cutter applied in Songliao volcanic rock stratum[D]. Daqing: Northeast Petroleum University, 2020.
[5]   汪海阁, 黄洪春, 毕文欣, 等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业, 2021, 41(8): 163-177.
WANG H G, HUANG H C, BI W X, et al. Deep and ultra-deep oil/gas well drilling technologies: progress and prospect[J]. Natural Gas Industry, 2021, 41(8): 163-177.
[6]   周立明, 韩征, 张道勇, 等. 中国新增石油和天然气探明地质储量特征[J]. 新疆石油地质, 2022, 43(1): 115-121.
ZHOU L M, HAN Z, ZHANG D Y, et al. Characteristics of incremental proven oil and natural gas geological reserves in China[J]. Xinjiang Petroleum Geology, 2022, 43(1): 115-121.
[7]   王光明, 李达, 倪骁骅. PDC钻头异形切削齿研究进展[J]. 石油矿场机械, 2022, 51(4): 76-83.
WANG G M, LI D, NI X H. Overseas research progress of special-shaped cutters for PDC bit[J]. Oil Field Equipment, 2022, 51(4): 76-83.
[8]   魏秀艳, 赫文豪, 史怀忠, 等. 三轴应力下三棱形PDC齿破岩特性数值模拟研究[J]. 石油机械, 2021, 49(9): 17-23, 32.
WEI X Y, HE W H, SHI H Z, et al. Numerical simulation study on rock breaking characteristics of prismatic PDC cutter under triaxial stress[J]. China Petroleum Machinery, 2021, 49(9): 17-23, 32.
[9]   许利辉, 毕泗义. 国外PDC切削齿研究进展[J]. 石油机械, 2017, 45(2): 35-40.
XU L H, BI S Y. Overseas researches on PDC cutters[J]. China Petroleum Machinery, 2017, 45(2): 35-40.
[10]   杨金华, 郭晓霞. PDC钻头技术发展现状与展望[J]. 石油科技论坛, 2018, 37(1): 33-38.
YANG J H, GUO X X. The present status and outlook of PDC bit technology[J]. Oil Forum, 2018, 37(1): 33-38.
[11]   赵润琦, 陈振良, 史怀忠, 等. 斧形PDC齿破碎致密硬质砂岩特性数值模拟研究[J]. 石油机械, 2021, 49(10): 8-16.
ZHAO R Q, CHEN Z L, SHI H Z, et al. Numerical simulation study on characteristics of tight hard sand broken by axe-shaped PDC cutter[J]. China Petroleum Machinery, 2021, 49(10): 8-16.
[12]   李超, 寇明富, 王世永, 等. 酒西地区白垩系地层新型PDC钻头技术及应用[J]. 石油机械, 2019, 47(3): 7-13.
LI C, KOU M F, WANG S Y, et al. Application of new type of PDC bit for Cretaceous formation in Jiuxi region[J]. China Petroleum Machinery, 2019, 47(3): 7-13.
[13]   AZAR M, WHITE A, SEGAL S, et al. Pointing towards improved PDC bit performance: innovative conical shaped polycrystalline diamond element achieves higher ROP and total footage[C]//SPE/IADC Drilling Conference. Amsterdam, Mar. 5-7, 2013.
[14]   AZAR M, WHITE A, VELVALURI S, et al. Middle east hard/abrasive formation challenge: reducing PDC cutter volume at bit center increases ROP/drilling efficiency[C]// SPE/IADC Middle East Drilling Technology Conference & Exhibition. Dubai, Oct. 7-9, 2013.
[15]   PAK M, AZAR M, BITS S, et al. Conical diamond element enables PDC bit to efficiently drill chert interval at high ROP replacing turbine/impregnated BHA[C]//IADC/SPE Drilling Conference and Exhibition. Fort Worth, Texas, Mar. 1-3, 2016.
[16]   BILLI A, STORTI F. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone[J]. Tectonophysics, 2004, 384(1/4): 115-128.
[17]   DENG Y, CHEN M, JIN Y, et al. Theoretical analysis and experimental research on the energy dissipation of rock crushing based on fractal theory[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 231-239.
[18]   KRUHL J H. Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy[J]. Journal of Structural Geology, 2013, 46: 2-21.
[19]   MANDELBROT B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3775): 636-638.
[20]   MANDELBROT B B, WHEELER J A. The fractal geometry of nature[J]. American Journal of Physics, 1983, 51(3): 286-287.
[21]   WANG S, WANG X, BAO L Q, et al. Characterization of hydraulic fracture propagation in tight formations: a fractal perspective[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107871.
[22]   YU B M, LI J H. Some fractal characters of porous media [J]. Fractals, 2001, 9(3): 365-372.
[23]   XIONG C, HUANG Z W, YANG R Y, et al. Comparative analysis cutting characteristics of stinger PDC cutter and conventional PDC cutter[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106792.
[24]   侯圣. 基于分形理论的徐深地层进尺成本分析及钻头优选[D]. 大庆: 东北石油大学, 2012.
HOU S. The footage cost and bit optimization base on fractal method in Xushen stratum [D]. Daqing: Northeast Petroleum University, 2012.
[25]   李玮, 张凤民, 闫铁, 等. 油气钻井中上返岩屑的分形分析[J]. 钻采工艺, 2008, 31(5): 142-144.
LI W, ZHANG F M, YAN T, et al. Fractal analysis of upward cuttings in oil and gas drilling[J]. Drilling & Production Technology, 2008, 31(5): 142-144.
[26]   闫铁, 李玮, 毕雪亮, 等. 旋转钻井中岩石破碎能耗的分形分析[J]. 岩石力学与工程学报, 2008, 27(): 3649-3654.
YAN T, LI W, BI X L, et al. Fractal analysis of energy consumption of rock fragmentation in rotary drilling[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(): 3649-3654.
[27]   徐卫强, 史怀忠, 曹权, 等. 锥形PDC齿破碎砾岩特性试验研究[J]. 石油机械, 2021, 49(9): 9-16.
XU W Q, SHI H Z, CAO Q, et al. Experimental study on conglomerate breaking characteristics of conical PDC cutter[J]. China Petroleum Machinery, 2021, 49(9): 9-16.
[28]   CHENG Z, SHENG M, LI G S, et al. Imaging the formation process of cuttings: characteristics of cuttings and mechanical specific energy in single PDC cutter tests[J]. Journal of Petroleum Science and Engineering, 2018, 171: 854-862.
[29]   XIONG C, HUANG Z W, SHI H Z, et al. Performances of a Stinger PDC cutter breaking granite: cutting force and mechanical specific energy in single cutter tests [J]. Petroleum Science, 2023, 20(2): 1087-1103.
[30]   CHENG Z, LI G S, HUANG Z W, et al. Analytical modelling of rock cutting force and failure surface in linear cutting test by single PDC cutter[J]. Journal of Petroleum Science and Engineering, 2019, 177: 306-316.
[31]   李劲, 尹卓, 刘忠, 等. PDC齿破岩力预测模型研究[J]. 石油机械, 2021, 49(8): 23-29, 38.
LI J, YIN Z, LIU Z, et al. Research on rock breaking force prediction model of PDC cutter[J]. China Petroleum Machinery, 2021, 49(8): 23-29, 38.
[32]   张丽秀, 申强, 张珂, 等. 基于Abaqus的PDC钻头切削齿破岩仿真及热分析[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(5): 912-920.
ZHANG L X, SHEN Q, ZHANG K, et al. Broken rock simulation and thermal analysis of PDC drill cutting edge based on Abaqus[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(5): 912-920.
[33]   HE W H, CHEN K Y, HAYATDAVOUDI A, et al. Incorporating the effects of elemental concentrations on rock tensile failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104062.
[1] LIAO Xiao-Yun, CHENG Sen-Lin, XU Zhong-Qing. Fracta-l based Tolerancing and Fractal Dimension Calculation of Profile[J]. Chinese Journal of Engineering Design, 2000, 7(4): 11-12.