Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (5): 547-556    DOI: 10.3785/j.issn.1006-754X.2024.04.137
Interdiscipline and Frontier     
Coastal blue carbon sink enhancement: frontier and outlook of technology and equipment
Yiyi ZHANG1,2(),Dongyang FAN1,Zhangqi ZUO3,Yixiong FENG4,Xi XIAO1,2()
1.Ocean College, Zhejiang University, Zhoushan 316021, China
2.International Blue Carbon Research Center of Ocean Academy, Zhejiang University, Zhoushan 316021, China
3.School of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
4.School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(3675KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Coastal blue carbon ecosystems such as mangroves, salt marshes, seagrass beds and seaweed fields are important natural carbon sinks for mitigating global climate change. Under various anthropogenic and natural threats, the coastal blue carbon ecosystems have been degraded on a large scale, so the restoration and enhancement of the carbon sink function of the coastal blue carbon ecosystem is an issue that needs to be solved urgently. According to the categories of coastal ecosystems, the main coastal blue carbon sink technologies and equipment were summarized. The comprehensive benefits of coastal blue carbon ecosystem sink enhancement were analyzed from the aspects of carbon sink enhancement benefit, economic benefit and eco-benefit. Future research should focus on the optimization of the observation system for the distribution and sink of coastal blue carbon ecosystems, the improvement of species optimization and planting methods, as well as the impact of emerging blue carbon ecosystems carbon sequestration technologies on eco-environment, so as to further consolidate and enhance the carbon sink of blue carbon ecosystems s, and help realize the goal of “carbon peak” and “carbon neutrality”.



Key wordscoastal ecosystem      blue carbon      carbon sink enhancement technology and equipment      eco-environment      eco-benefit     
Received: 06 May 2024      Published: 30 October 2024
CLC:  X 14  
Corresponding Authors: Xi XIAO     E-mail: 22134126@zju.edu.cn;xi@zju.edu.cn
Cite this article:

Yiyi ZHANG,Dongyang FAN,Zhangqi ZUO,Yixiong FENG,Xi XIAO. Coastal blue carbon sink enhancement: frontier and outlook of technology and equipment. Chinese Journal of Engineering Design, 2024, 31(5): 547-556.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.04.137     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I5/547


滨海蓝碳增汇:技术、装备前沿与展望

红树林、盐沼、海草床和海藻场等滨海蓝碳生态系统是缓解全球气候变化的重要天然碳汇。在人为和自然压力的多重胁迫下,滨海蓝碳生态系统面临大规模退化,因此修复和提升滨海蓝碳生态系统的碳汇功能是目前亟待解决的问题。根据滨海蓝碳生态系统的类别,综述了目前滨海蓝碳生态系统增汇的主要技术与装备,并从增汇效益、经济效益和生态效益等方面分析了滨海蓝碳生态系统增汇综合效益。未来研究应围绕滨海蓝碳生态系统分布和碳汇的观测体系优化、物种优选培育和种植方法的改良、新兴蓝碳生态系统碳封存技术对生态环境的影响等方面开展,进一步巩固和提升滨海蓝碳生态系统增汇,助力实现“碳达峰”和“碳中和”的目标。


关键词: 滨海生态系统,  蓝碳,  增汇技术与装备,  生态环境,  生态效益 
Fig.1 Coastal blue carbon ecosystems
Fig.2 Publication of study on coastal blue carbon sink enhancement (retrieved from Web of Science)
Fig.3 Main technologies and equipment for coastal blue carbon sink enhancement
Fig.4 Part of coastal blue carbon sink enhancement equipment

生态

系统

增汇技术

(典型工程实施地点)

增汇装备

增汇效益/

(Mg/a)[45]

施工成本/

[美元/

(hm2·a)][46-49]

经济效益/

[美元/

(hm2·a)][46-49]

生态效益

(生物丰富度和多样性)

红树林

红树林引进后北移(浙江温州)[11]

挖沟渠连通水流

(印度尼西亚苏拉

威西岛)[17]

温排水输送沟渠管道3.0×108~3.6×10823.0~3.7×105146.0~5.1×105

螃蟹、多毛类蠕虫和两栖动物的密度增加,滨鸟和

鱼类种类增多

盐沼

施加生物炭

(江苏盐城)[18]

改变生态系统类型,由盐沼转变为红树林(澳大利亚

链谷湾)[25]

海上光伏发电装置5.0×107~7.0×1071.2×103~3.3×1051.0×103~3.1×105盐沼本土植物种类和生物量增加;鱼、螃蟹、滨鸟、水禽、雀鸟和猛禽的数量增加
海草床

移植海草(澳大利亚牡蛎港[34]

通过鸟类栖息的木桩施加鸟粪肥料(美国佛罗里达群岛)[35]

海草移植

装备

1.3×108~1.6×1081.2×104~7.0×1051.9×103~3.6×105鸟、无脊椎动物、双壳类动物和鱼的种类增加
海藻场

中水层绳索培养

技术(韩国庆尚

南道南海郡)[42]

上升流作用下将深海营养物质带至表层

(山东青岛鳌山湾)[38]

基于波浪纳米摩擦发电机的海藻补光装备

风电大型海藻养殖装备

3.0×1083.4×104~2.2×1056.4×104~1.4×105鱼、蟹、螺和无脊椎动物的种类和数量增多
Table 1 Technology, equipment and benefit for coastal blue carbon sink enhancement
[1]   WANG F M, LIU J H, QIN G M, et al. Coastal blue carbon in China as a nature-based solution toward carbon neutrality[J]. The Innovation, 2023, 4(5): 100481.
[2]   MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
[3]   ADAME M F, CONNOLLY R M, TURSCHWELL M P, et al. Future carbon emissions from global mangrove forest loss[J]. Global Change Biology, 2021, 27(12): 2856-2866.
[4]   PERERA N, LOKUPITIYA E, HALWATURA D, et al. Quantification of blue carbon in tropical salt marshes and their role in climate change mitigation[J]. Science of the Total Environment, 2022, 820: 153313.
[5]   CAMPBELL A D, FATOYINBO L, GOLDBERG L, et al. Global hotspots of salt marsh change and carbon emissions[J]. Nature, 2022, 612: 701-706.
[6]   PENDLETON L, DONATO D C, MURRAY B C, et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems[J]. PLoS One, 2012, 7(9): e43542.
[7]   KRAUSE-JENSEN D, DUARTE C M. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 2016, 9(10): 737-742.
[8]   ROSS F W R, BOYD P W, FILBEE-DEXTER K, et al. Potential role of seaweeds in climate change mitigation[J]. Science of the Total Environment, 2023, 885: 163699.
[9]   XIAO X, AGUSTI S, LIN F, et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture[J]. Scientific Reports, 2017, 7: 46613.
[10]   SASMITO S D, BASYUNI M, KRIDALAKSANA A, et al. Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia's mangroves[J]. Nature Ecology & Evolution, 2023, 7(1): 62-70.
[11]   LIU T T, CHEN X C, DU M H, et al. Replacing Spartina alterniflora with northward-afforested mangroves has the potential to acquire extra blue carbon[J]. Science of the Total Environment, 2024, 921: 170952.
[12]   SONG S S, DING Y L, LI W, et al. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change[J]. Nature Communications, 2023, 14(1): 756.
[13]   CHEN J H, ZHAI G Q, CHEN G C, et al. Differences in ecosystem organic carbon stocks due to species selection and site elevation of restored mangrove forests[J]. CATENA, 2023, 226: 107089.
[14]   韩广轩, 宋维民, 李远, 等. 海岸带蓝碳增汇: 理念、技术与未来建议[J]. 中国科学院院刊, 2023, 38(3): 492-503.
HAN G X, SONG W M, LI Y, et al. Enhancement of coastal blue carbon: Concepts, techniques, and future suggestions[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 492-503.
[15]   DEB S, MANDAL B. Soils and sediments of coastal ecology: A global carbon sink[J]. Ocean & Coastal Management, 2021, 214: 105937.
[16]   TEUTLI-HERNÁNDEZ C, HERRERA-SILVEIRA J A, COMÍN F A, et al. Nurse species could facilitate the recruitment of mangrove seedlings after hydrological rehabilitation[J]. Ecological Engineering, 2019, 130: 263-270.
[17]   CAMERON C, HUTLEY L B, FRIESS D A, et al. High greenhouse gas emissions mitigation benefits from mangrove rehabilitation in Sulawesi, Indonesia[J]. Ecosystem Services, 2019, 40: 101035.
[18]   CUI L Q, LIU Y M, YAN J L, et al. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth[J]. Ecological Engineering, 2022, 179: 106594.
[19]   CAI J F, FAN JIANG, LIU X S, et al. Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities[J]. Science of the Total Environment, 2021, 788: 147707.
[20]   SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma: the secrets of a multitalented biocontrol agent[J]. Plants, 2020, 9(6): 762.
[21]   王沁怡, 张生乐, 张伯伦, 等. 木霉菌和复合微生物制剂在海三棱藨草湿地修复中的应用研究[J]. 海洋湖沼通报, 2024, 46(2): 116-124.
WANG Q Y, ZHANG S L, ZHANG B L, et al. Studies on the applications of Trichoderma and compound microbial agents in the restoration of Scirpus mariqueter wetland[J]. Transactions of Oceanology and Limnology, 2024, 46(2): 116-124.
[22]   CHEN Q, LAN P Y, WU M, et al. Biochar mitigates allelopathy through regulating allelochemical generation from plants and accumulation in soil[J]. Carbon Research, 2022, 1(1): 6.
[23]   LIN C C, LIU Y T, CHANG P H, et al. Inhibition of continuous cropping obstacle of celery by chemically modified biochar: An efficient approach to decrease bioavailability of phenolic allelochemicals[J]. Journal of Environmental Management, 2023, 348: 119316.
[24]   CHEN Y, PENG Y, DAI C C, et al. Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari[J]. Applied Soil Ecology, 2011, 51: 102-110.
[25]   ROGERS K, KELLEWAY J J, SAINTILAN N, et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise[J]. Nature, 2019, 567: 91-95.
[26]   XU K H, BENTLEY S J, DAY J W, et al. A review of sediment diversion in the Mississippi River Deltaic Plain[J]. Estuarine, Coastal and Shelf Science, 2019, 225: 106241.
[27]   DE PAIVA J N S, WALLES B, YSEBAERT T, et al. Understanding the conditionality of ecosystem services: The effect of tidal flat morphology and oyster reef characteristics on sediment stabilization by oyster reefs[J]. Ecological Engineering, 2018, 112: 89-95.
[28]   LIN H J, YU Q, DU Z Y, et al. Geomorphology and sediment dynamics of the Liyashan oyster reefs, Jiangsu Coast, China[J]. Acta Oceanologica Sinica, 2021, 40(10): 118-128.
[29]   STAFFORD-BELL R E, CHARITON A A, ROBINSON R W. Germination and early-stage development in the seagrass, Zostera muelleri Irmisch ex Asch in response to multiple stressors[J]. Aquatic Botany, 2016, 128: 18-25.
[30]   于硕, 张景平, 崔黎军, 等. 基于种子法的海菖蒲海草床恢复[J]. 热带海洋学报, 2019, 38(1): 49-54.
YU S, ZHANG J P, CUI L J, et al. Preliminary study on seed-based restoration for Enhalus acoroides meadow[J]. Journal of Tropical Oceanography, 2019, 38(1): 49-54.
[31]   PALING E I, VAN K M, WHEELER K D, et al. Mechanical seagrass transplantation in Western Australia[J]. Ecological Engineering, 2001, 16(3): 331-339.
[32]   PALING E I, VAN K M, WHEELER K D, et al. Improving mechanical seagrass transplantation[J]. Ecological Engineering, 2001, 18(1): 107-113.
[33]   田璐, 张沛东, 张凌宇, 等. 移植操作胁迫对天鹅湖大叶藻存活、生长及光合色素含量的影响[J]. 中国海洋大学学报(自然科学版), 2014, 44(8): 25-30.
TIAN L, ZHANG P D, ZHANG L Y, et al. Influence of transplanting stress on the survival, growth and photosynthetic pigment content of eelgrass (Zostera marina L) in Swan Lake, Rongcheng, Shandong[J]. 2014, 44(8): 25-30.
[34]   MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. Journal of Ecology, 2015, 103(2): 296-302.
[35]   KENWORTHY W J, HALL M O, HAMMERSTROM K K, et al. Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading[J]. Ecological Engineering, 2018, 112: 72-81.
[36]   MACDONNELL C, BYDALEK F, OSBORNE T Z, et al. Use of a wastewater recovery product (struvite) to enhance subtropical seagrass restoration[J]. Science of the Total Environment, 2022, 838: 155717.
[37]   FUJITA R, AUGYTE S, BENDER J, et al. Seaweed blue carbon: Ready? or not?[J]. Marine Policy, 2023, 155: 105747.
[38]   洪恒飞, 高楚清, 江耘. 促进蓝碳增汇 给海洋牧场装上巨型“气泵” [N]. 科技日报, 2022-02-08(6).
HONG H F, GAO C Q, JIANG Y. Promoting blue carbon sinks and installing giant “air pumps” in ocean rangelands[N]. Science and Technology Daily, 2022-02-08(6).
[39]   FISHER L V, BARRON A R. The recycling and reuse of steelmaking slags: A review[J]. Resources, Conservation and Recycling, 2019, 146: 244-255.
[40]   ZHANG H, HUANG Y Z, DU X R, et al. Self-powered and self-sensing blue carbon ecosystems by hybrid fur triboelectric nanogenerators(F-TENG)[J]. Nano Energy, 2024, 119: 109091.
[41]   连宇顺, 潘正虎, 郑金海, 等. 离岸系泊式海藻牧场的动力响应分析[J]. 河海大学学报(自然科学版), 2023, 51(6): 107-116.
LIAN Y S, PAN Z H, ZHENG J H, et al. Dynamic response analysis of offshore moored kelp farms[J]. Journal of Hohai University (Natural Sciences), 2023, 51(6): 107-116.
[42]   CHUNG I K, OAK J H, LEE J A, et al. Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean project overview[J]. ICES Journal of Marine Science, 2013, 70(5): 1038-1044.
[43]   李梦, 莫珍妮, 赖廷和, 等. 滨海电厂温排水温升对红树林分布扩散的影响 [J]. 广西科学, 2024(4): 1-16.
LI M, MO Z N, LAI T H, et al. Effects of temperature and drainage from a coastal power plant on the distribution and dispersal of mangroves [J]. Guangxi Sciences, 2024(4): 1-16.
[44]   BUCK B, LANGAN R. Aquaculture Perspective of Multi-Use Sites in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene [J]. 2017.
[45]   BUMA B, GORDON D R, KLEISNER K M, et al. Expert review of the science underlying nature-based climate solutions[J]. Nature Climate Change, 2024, 14(4): 402-406.
[46]   SU J, FRIESS D A, GASPARATOS A. A meta-analysis of the ecological and economic outcomes of mangrove restoration[J]. Nature Communications, 2021, 12(1): 5050.
[47]   KIM J H, NAM J, YOO S H. Public perceptions of blue carbon in South Korea: Findings from a choice experiment[J]. Marine Policy, 2022, 144: 105236.
[48]   DUARTE C M, SINTES T, MARBÀ N. Assessing the CO2 capture potential of seagrass restoration projects[J]. Journal of Applied Ecology, 2013, 50(6): 1341-1349.
[49]   EGER A M, MARZINELLI E M, BEAS-LUNA R, et al. The value of ecosystem services in global marine kelp forests[J]. Nature Communications, 2023, 14(1): 1894.
[50]   ROCHLIN I, JAMES-PIRRI M J, ADAMOWICZ S C, et al. Integrated marsh management (IMM): A new perspective on mosquito control and best management practices for salt marsh restoration[J]. Wetlands Ecology and Management, 2012, 20(3): 219-232.
[51]   THORHAUG A, BELAIRE C, VERDUIN J J, et al. Longevity and sustainability of tropical and subtropical restored seagrass beds among Atlantic, Pacific, and Indian Oceans[J]. Marine Pollution Bulletin, 2020, 160: 111544.
No related articles found!