|
|
[1] |
WANG F M, LIU J H, QIN G M, et al. Coastal blue carbon in China as a nature-based solution toward carbon neutrality[J]. The Innovation, 2023, 4(5): 100481.
|
|
|
[2] |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 [J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
|
|
|
[3] |
ADAME M F, CONNOLLY R M, TURSCHWELL M P, et al. Future carbon emissions from global mangrove forest loss[J]. Global Change Biology, 2021, 27(12): 2856-2866.
|
|
|
[4] |
PERERA N, LOKUPITIYA E, HALWATURA D, et al. Quantification of blue carbon in tropical salt marshes and their role in climate change mitigation[J]. Science of the Total Environment, 2022, 820: 153313.
|
|
|
[5] |
CAMPBELL A D, FATOYINBO L, GOLDBERG L, et al. Global hotspots of salt marsh change and carbon emissions[J]. Nature, 2022, 612: 701-706.
|
|
|
[6] |
PENDLETON L, DONATO D C, MURRAY B C, et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems[J]. PLoS One, 2012, 7(9): e43542.
|
|
|
[7] |
KRAUSE-JENSEN D, DUARTE C M. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 2016, 9(10): 737-742.
|
|
|
[8] |
ROSS F W R, BOYD P W, FILBEE-DEXTER K, et al. Potential role of seaweeds in climate change mitigation[J]. Science of the Total Environment, 2023, 885: 163699.
|
|
|
[9] |
XIAO X, AGUSTI S, LIN F, et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture[J]. Scientific Reports, 2017, 7: 46613.
|
|
|
[10] |
SASMITO S D, BASYUNI M, KRIDALAKSANA A, et al. Challenges and opportunities for achieving Sustainable Development Goals through restoration of Indonesia's mangroves[J]. Nature Ecology & Evolution, 2023, 7(1): 62-70.
|
|
|
[11] |
LIU T T, CHEN X C, DU M H, et al. Replacing Spartina alterniflora with northward-afforested mangroves has the potential to acquire extra blue carbon[J]. Science of the Total Environment, 2024, 921: 170952.
|
|
|
[12] |
SONG S S, DING Y L, LI W, et al. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change[J]. Nature Communications, 2023, 14(1): 756.
|
|
|
[13] |
CHEN J H, ZHAI G Q, CHEN G C, et al. Differences in ecosystem organic carbon stocks due to species selection and site elevation of restored mangrove forests[J]. CATENA, 2023, 226: 107089.
|
|
|
[14] |
韩广轩, 宋维民, 李远, 等. 海岸带蓝碳增汇: 理念、技术与未来建议[J]. 中国科学院院刊, 2023, 38(3): 492-503. HAN G X, SONG W M, LI Y, et al. Enhancement of coastal blue carbon: Concepts, techniques, and future suggestions[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 492-503.
|
|
|
[15] |
DEB S, MANDAL B. Soils and sediments of coastal ecology: A global carbon sink[J]. Ocean & Coastal Management, 2021, 214: 105937.
|
|
|
[16] |
TEUTLI-HERNÁNDEZ C, HERRERA-SILVEIRA J A, COMÍN F A, et al. Nurse species could facilitate the recruitment of mangrove seedlings after hydrological rehabilitation[J]. Ecological Engineering, 2019, 130: 263-270.
|
|
|
[17] |
CAMERON C, HUTLEY L B, FRIESS D A, et al. High greenhouse gas emissions mitigation benefits from mangrove rehabilitation in Sulawesi, Indonesia[J]. Ecosystem Services, 2019, 40: 101035.
|
|
|
[18] |
CUI L Q, LIU Y M, YAN J L, et al. Revitalizing coastal saline-alkali soil with biochar application for improved crop growth[J]. Ecological Engineering, 2022, 179: 106594.
|
|
|
[19] |
CAI J F, FAN JIANG, LIU X S, et al. Biochar-amended coastal wetland soil enhances growth of Suaeda salsa and alters rhizosphere soil nutrients and microbial communities[J]. Science of the Total Environment, 2021, 788: 147707.
|
|
|
[20] |
SOOD M, KAPOOR D, KUMAR V, et al. Trichoderma: the secrets of a multitalented biocontrol agent[J]. Plants, 2020, 9(6): 762.
|
|
|
[21] |
王沁怡, 张生乐, 张伯伦, 等. 木霉菌和复合微生物制剂在海三棱藨草湿地修复中的应用研究[J]. 海洋湖沼通报, 2024, 46(2): 116-124. WANG Q Y, ZHANG S L, ZHANG B L, et al. Studies on the applications of Trichoderma and compound microbial agents in the restoration of Scirpus mariqueter wetland[J]. Transactions of Oceanology and Limnology, 2024, 46(2): 116-124.
|
|
|
[22] |
CHEN Q, LAN P Y, WU M, et al. Biochar mitigates allelopathy through regulating allelochemical generation from plants and accumulation in soil[J]. Carbon Research, 2022, 1(1): 6.
|
|
|
[23] |
LIN C C, LIU Y T, CHANG P H, et al. Inhibition of continuous cropping obstacle of celery by chemically modified biochar: An efficient approach to decrease bioavailability of phenolic allelochemicals[J]. Journal of Environmental Management, 2023, 348: 119316.
|
|
|
[24] |
CHEN Y, PENG Y, DAI C C, et al. Biodegradation of 4-hydroxybenzoic acid by Phomopsis liquidambari[J]. Applied Soil Ecology, 2011, 51: 102-110.
|
|
|
[25] |
ROGERS K, KELLEWAY J J, SAINTILAN N, et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise[J]. Nature, 2019, 567: 91-95.
|
|
|
[26] |
XU K H, BENTLEY S J, DAY J W, et al. A review of sediment diversion in the Mississippi River Deltaic Plain[J]. Estuarine, Coastal and Shelf Science, 2019, 225: 106241.
|
|
|
[27] |
DE PAIVA J N S, WALLES B, YSEBAERT T, et al. Understanding the conditionality of ecosystem services: The effect of tidal flat morphology and oyster reef characteristics on sediment stabilization by oyster reefs[J]. Ecological Engineering, 2018, 112: 89-95.
|
|
|
[28] |
LIN H J, YU Q, DU Z Y, et al. Geomorphology and sediment dynamics of the Liyashan oyster reefs, Jiangsu Coast, China[J]. Acta Oceanologica Sinica, 2021, 40(10): 118-128.
|
|
|
[29] |
STAFFORD-BELL R E, CHARITON A A, ROBINSON R W. Germination and early-stage development in the seagrass, Zostera muelleri Irmisch ex Asch in response to multiple stressors[J]. Aquatic Botany, 2016, 128: 18-25.
|
|
|
[30] |
于硕, 张景平, 崔黎军, 等. 基于种子法的海菖蒲海草床恢复[J]. 热带海洋学报, 2019, 38(1): 49-54. YU S, ZHANG J P, CUI L J, et al. Preliminary study on seed-based restoration for Enhalus acoroides meadow[J]. Journal of Tropical Oceanography, 2019, 38(1): 49-54.
|
|
|
[31] |
PALING E I, VAN K M, WHEELER K D, et al. Mechanical seagrass transplantation in Western Australia[J]. Ecological Engineering, 2001, 16(3): 331-339.
|
|
|
[32] |
PALING E I, VAN K M, WHEELER K D, et al. Improving mechanical seagrass transplantation[J]. Ecological Engineering, 2001, 18(1): 107-113.
|
|
|
[33] |
田璐, 张沛东, 张凌宇, 等. 移植操作胁迫对天鹅湖大叶藻存活、生长及光合色素含量的影响[J]. 中国海洋大学学报(自然科学版), 2014, 44(8): 25-30. TIAN L, ZHANG P D, ZHANG L Y, et al. Influence of transplanting stress on the survival, growth and photosynthetic pigment content of eelgrass (Zostera marina L) in Swan Lake, Rongcheng, Shandong[J]. 2014, 44(8): 25-30.
|
|
|
[34] |
MARBÀ N, ARIAS-ORTIZ A, MASQUÉ P, et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. Journal of Ecology, 2015, 103(2): 296-302.
|
|
|
[35] |
KENWORTHY W J, HALL M O, HAMMERSTROM K K, et al. Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading[J]. Ecological Engineering, 2018, 112: 72-81.
|
|
|
[36] |
MACDONNELL C, BYDALEK F, OSBORNE T Z, et al. Use of a wastewater recovery product (struvite) to enhance subtropical seagrass restoration[J]. Science of the Total Environment, 2022, 838: 155717.
|
|
|
[37] |
FUJITA R, AUGYTE S, BENDER J, et al. Seaweed blue carbon: Ready? or not?[J]. Marine Policy, 2023, 155: 105747.
|
|
|
[38] |
洪恒飞, 高楚清, 江耘. 促进蓝碳增汇 给海洋牧场装上巨型“气泵” [N]. 科技日报, 2022-02-08(6). HONG H F, GAO C Q, JIANG Y. Promoting blue carbon sinks and installing giant “air pumps” in ocean rangelands[N]. Science and Technology Daily, 2022-02-08(6).
|
|
|
[39] |
FISHER L V, BARRON A R. The recycling and reuse of steelmaking slags: A review[J]. Resources, Conservation and Recycling, 2019, 146: 244-255.
|
|
|
[40] |
ZHANG H, HUANG Y Z, DU X R, et al. Self-powered and self-sensing blue carbon ecosystems by hybrid fur triboelectric nanogenerators(F-TENG)[J]. Nano Energy, 2024, 119: 109091.
|
|
|
[41] |
连宇顺, 潘正虎, 郑金海, 等. 离岸系泊式海藻牧场的动力响应分析[J]. 河海大学学报(自然科学版), 2023, 51(6): 107-116. LIAN Y S, PAN Z H, ZHENG J H, et al. Dynamic response analysis of offshore moored kelp farms[J]. Journal of Hohai University (Natural Sciences), 2023, 51(6): 107-116.
|
|
|
[42] |
CHUNG I K, OAK J H, LEE J A, et al. Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean project overview[J]. ICES Journal of Marine Science, 2013, 70(5): 1038-1044.
|
|
|
[43] |
李梦, 莫珍妮, 赖廷和, 等. 滨海电厂温排水温升对红树林分布扩散的影响 [J]. 广西科学, 2024(4): 1-16. LI M, MO Z N, LAI T H, et al. Effects of temperature and drainage from a coastal power plant on the distribution and dispersal of mangroves [J]. Guangxi Sciences, 2024(4): 1-16.
|
|
|
[44] |
BUCK B, LANGAN R. Aquaculture Perspective of Multi-Use Sites in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene [J]. 2017.
|
|
|
[45] |
BUMA B, GORDON D R, KLEISNER K M, et al. Expert review of the science underlying nature-based climate solutions[J]. Nature Climate Change, 2024, 14(4): 402-406.
|
|
|
[46] |
SU J, FRIESS D A, GASPARATOS A. A meta-analysis of the ecological and economic outcomes of mangrove restoration[J]. Nature Communications, 2021, 12(1): 5050.
|
|
|
[47] |
KIM J H, NAM J, YOO S H. Public perceptions of blue carbon in South Korea: Findings from a choice experiment[J]. Marine Policy, 2022, 144: 105236.
|
|
|
[48] |
DUARTE C M, SINTES T, MARBÀ N. Assessing the CO2 capture potential of seagrass restoration projects[J]. Journal of Applied Ecology, 2013, 50(6): 1341-1349.
|
|
|
[49] |
EGER A M, MARZINELLI E M, BEAS-LUNA R, et al. The value of ecosystem services in global marine kelp forests[J]. Nature Communications, 2023, 14(1): 1894.
|
|
|
[50] |
ROCHLIN I, JAMES-PIRRI M J, ADAMOWICZ S C, et al. Integrated marsh management (IMM): A new perspective on mosquito control and best management practices for salt marsh restoration[J]. Wetlands Ecology and Management, 2012, 20(3): 219-232.
|
|
|
[51] |
THORHAUG A, BELAIRE C, VERDUIN J J, et al. Longevity and sustainability of tropical and subtropical restored seagrass beds among Atlantic, Pacific, and Indian Oceans[J]. Marine Pollution Bulletin, 2020, 160: 111544.
|
|
|