Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (1): 120-129    DOI: 10.3785/j.issn.1006-754X.2024.03.303
Multidisciplinary Simulation and Optimization Design     
Study on material-structure-performance cross-scale correlation effect of power battery
Zhi ZHANG1(),Yangang ZHANG1(),Meiwen CAO2,Jianjun CHEN2,Zhiqiang YANG2,Jushou GUO2
1.School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
2.The North General Power Group Co. , Ltd. , Datong 037036, China
Download: HTML     PDF(4287KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Power battery is the core component of new energy vehicle, and its electrochemical and thermal performances are the key to the large-scale promotion and application of new energy vehicle. However, the electrochemical and thermal performances at the macro scale are affected not only by the electrode material characteristics at the micro scale, but also by the battery structural parameters at the mesoscale. In order to reveal the influence mechanism of battery material parameters, electrode structure parameters and battery working parameters on the performance of power battery, taking 18650 nickel-cobalt-manganese ternary power battery lithium as the research object, the influence law of the above parameters on the electrochemical and thermal performances of power battery was explored by constructing the battery electrochemical-thermal coupling model. The material-structure-performance cross-scale correlation effect of power battery was analyzed comprehensively. The results showedt hat the effects of battery material parameters, electrode structural parameters and battery working parameters on the performances of power battery had the characteristic of strong cross-scale correlation.The design and performance optimization of power battery at a single scale can not achieve optimal results, and the material-structure-performance cross-scale design and optimization is the fundamental way to improve the safety and dynamic performances of power battery.



Key wordspower battery      electrochemical-thermal coupling model      cross scale correlation      electrochemical performance      thermal performance     
Received: 28 October 2023      Published: 04 March 2024
CLC:  TM 912  
Corresponding Authors: Yangang ZHANG     E-mail: 1187080251@qq.com;zyg31124@163.com
Cite this article:

Zhi ZHANG,Yangang ZHANG,Meiwen CAO,Jianjun CHEN,Zhiqiang YANG,Jushou GUO. Study on material-structure-performance cross-scale correlation effect of power battery. Chinese Journal of Engineering Design, 2024, 31(1): 120-129.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.303     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I1/120


动力电池材料—结构—性能跨尺度关联效应研究

动力电池是新能源汽车的核心部件,其电化学性能和热性能是决定新能源汽车能否规模化推广应用的关键,然而宏观尺度下的电化学性能和热性能既受到微观尺度下的电极材料特性的影响,又受到介观尺度下的电池结构参数的影响。为了揭示电池材料参数、电极结构参数和电池工作参数对动力电池性能的影响机理,以18650型镍钴锰三元动力电池锂为研究对象,通过构建电池电化学-热耦合模型,分别探究了上述各参数对动力电池电化学性能和热性能的影响规律,综合分析了电池材料—结构—性能跨尺度关联效应。研究结果表明:电池材料参数、电极结构参数、电池工作参数对动力电池性能的影响具有跨尺度强相关的特征。单一尺度下的动力电池设计及性能优化并不能得到最优结果,开展材料—结构—性能跨尺度设计及优化是动力电池安全性能和动力性能提升的根本途径。


关键词: 动力电池,  电化学-热耦合模型,  跨尺度关联,  电化学性能,  热性能 
Fig.1 One-dimensional electrochemical model of lithium-ion battery
名称单位负集流体负极隔膜正极正集流体
长度mm768165312
活性物质粒径μm5.32.4
初始锂离子浓度mol/m316 14030 760
最大锂离子浓度mol/m334 19047 910
固相体积分数0.430.50.58
液相体积分数0.3360.540.28
固相电导率S/m3.87×1070.11005.98×107
传递系数0.50.5
液相锂浓度mol/m31 0001 0001 000
反应速率m/s1×10-111×10-11
传递数0.3630.3630.363
Table 1 Parameters of electrochemical model of power battery
名称单位铜箔铝箔正极活性物质负极活性物质电解液
导热系数W/m33952451.041.580.53
比热容J/(kg·m3)3809001 0981 405.6650
密度kg/m38 9302 7002 4502 6601 200
Table 2 Parameters of thermal model of power battery
Fig.2 Comparison of experimental and simulation values of discharge voltage of power battery
Fig.3 Schematic of temperature measuring point position of power battery
Fig.4 Comparison of experimental and simulation values of temperature at different temperature measuring points
测温点最大绝对误差/℃最大相对误差/%
T10.502.60
T20.352.89
T30.211.60
T40.181.60
T50.292.36
Table 3 The maximum error between the experimental value and simulation value at different temperature measureing points
Fig.5 Distribution law of solid-phase lithium ion concentration in electrode under different discharge rates
Fig.6 Concentration distribution law of liquid-phase lithium ions in electrode under different discharge rates
Fig.7 Discharge voltage variation curves of power battery under different positive and negative particle sizes
Fig.8 Discharge voltage variation curves of power battery under different initial electrolyte concentrations
Fig.9 Battery temperature variation curves under different radial density and radial heat capacity of power battery
Fig.10 Discharge voltage variation curves of power battery under different positive and negative electrode lengths
Fig.11 Temperature variation curves of power battery under different positive and negative electrode lengths
Fig.12 Discharge voltage variation curves of power battery under different separator lengths
Fig.13 Discharge voltage variation curves of power battery under different reaction rates in positive and negative electrodes
Fig.14 Discharge voltage variation curves of power battery under different positive and negative electrode diffusion coefficients
Fig.15 Discharge voltage and subassembly heat variation curves of power battery under different discharge magnifications
Fig.16 Lithium ion concentration and discharge voltage variation curves of power battery under different environment temperature
尺度参数电压U容量C温度T

正极长度↓↓↓
负极长度↑末段↑↑↑↓↓
膈膜长度↑高倍率↓轻微↑

正极粒径↓
负极粒径↓末段↑

初始电解质浓度

(一定范围内↑)

径向热容↑↓↓
径向密度↑初段↓

正负极反应速率常数↑
负极扩散系数↑
正极扩散系数↑无影响无影响
放电倍率↑↓↓↑↑

环境温度↑

环境温度↓

↓↓

↓↓

↑↑

↑↑

Table 4 cross-scale correlation effect of parameter and performance of power battery
Fig.17 Cross-scale correlation path and mode of material-structure-performance of power battery
[1]   TAN Q B, WANG Z N, FAN W, et al. Development path and model design of a new energy vehicle in China [J]. Energies, 2023, 16(1): 220. doi:10.3390/en16010220 .
doi: 10.3390/en16010220
[2]   王震坡, 詹炜鹏, 孙逢春, 等. 新能源汽车碳减排潜力分析[J]. 北京理工大学学报, 2024,44(2):111-122.
WANG Z P, ZHAN W P, SUN F C, et al. Analysis of carbon emission reduction potential of new energy vehicles [J]. Transactions of Beijing Institute of Technology, 2024, 44(2): 111-122.
[3]   QIN S F, XIONG Y Q. Differential impact of subsidised and nonsubsidized policies on the innovation of new energy vehicle enterprises: Evidence from China[J]. Asian Journal of Technology Innovation, 2022, 31(2): 260-283.
[4]   舒强, 王艺帆, 梁元. 我国电动汽车动力电池安全标准现状及展望[J]. 汽车工程, 2022, 44(11): 1706-1715.
SHU Q, WANG Y F, LIANG Y. Current status and prospects of safety standards for electric vehicle power batteries in China [J]. Automotive Engineering, 2022, 44(11): 1706-1715.
[5]   杨续来, 袁帅帅, 杨文静, 等. 锂离子动力电池能量密度特性研究进展[J]. 机械工程学报, 2023, 59(6): 239-254.
YANG X L, YUAN S S, YANG W J, et al. Research progress on energy density characteristics of lithium-ion power batteries[J]. Journal of Mechanical Engineering, 2023, 59(6): 239-254.
[6]   LEE Y K, LEE U, KANG N. Multi-scale design optimization of electric vehicles by analytical target cascading: From battery cell level to marketing level [J]. Journal of Cleaner Production, 2022, 368: 133235.
[7]   KLEMENS J, BURGER D, SCHNEIDER L, et al. Drying of compact and porous NCM cathode electrodes in different multilayer architectures: Influence of layer configuration and drying rate on electrode properties [J]. Energy Technology, 2023, 11(8): 2300267. doi:10.1002/ente.202300267 .
doi: 10.1002/ente.202300267
[8]   WANG Y Y, SUN S R, WU X L, et al. Status and opportunities of zinc ion hybrid capacitors: Focus on carbon materials, current collectors, and separators [J]. Nano-micro Letters, 2023, 15: 1-39.
[9]   ABDOLLAHIFAR M, CAVERS H, SCHEFFLER S, et al. Insights into influencing electrode calendering on the battery performance [J]. Advanced Energy Materials, 2023, 15(1): 2300973. doi:10.1007/s40820-023-01065-x .
doi: 10.1007/s40820-023-01065-x
[10]   YU S Y, XU C, MAO Y, et al. Heat generation mechanism and parameter sensitivity analysis of NCA-graphite battery based on electrochemical-thermal coupling model [J]. Journal of the Electrochemical Society, 2023, 170(6): 060514. doi:10.1149/1945-7111/acd8f7 .
doi: 10.1149/1945-7111/acd8f7
[11]   GHAEMINEZHAD N, MONFARED M. Charging control strategies for lithium-ion battery packs: Review and recent developments [J]. IET Power Electronics, 2022, 15(5): 349-367.
[12]   AZIMI V, ALLAM A, ONORI S. Extending life of lithium-ion battery systems by embracing heterogeneities via an optimal control-based active balancing strategy [J]. IEEE Transactions on Control Systems Technology, 2023, 31(3): 1235-1249.
[13]   张立玉, 路昭, 韦立川, 等. 锂电池性能与温度相关性的基础实验研究[J]. 西安交通大学学报, 2018, 52(5):133-141. doi:10.7652/xjtuxb201805019
ZHANG L Y, LU Z, WEI L C, et al. Basic experimental study on the correlation between lithium battery performance and temperature [J]. Journal of Xi'an Jiaotong University, 2018, 52(5): 133-141.
doi: 10.7652/xjtuxb201805019
[14]   徐乐, 邓忠伟, 谢翌, 等. 锂离子电池高精度机理建模、参数辨识与寿命预测研究进展[J]. 机械工程学报, 2022,58(22):19-36.
XU L, DENG Z W, XIE Y, et al. Research progress in high-precision mechanism modeling, parameter identification, and life prediction of lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(22): 19-36.
[15]   程昀, 李劼, 贾明, 等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报,2015,64(21): 145-160. doi:10.7498/aps.64.210202
CHENG Y, LI J, JIA M, et al. Application status and future of multi-scale numerical models for lithium ion battery [J]. Acta Physica Sinica, 2015, 64(21): 145-160.
doi: 10.7498/aps.64.210202
[16]   LE H J, KRAMER D. Physics based modelling of porous lithium ion battery electrodes-a review [J]. Energy Reports, 2020, 6(5): 1-9.
[17]   匡柯, 孙跃东, 任东生, 等. 车用锂离子电池电化学-热耦合高效建模方法[J]. 机械工程学报,2021,57(14): 10-22.
KUANG K, SUN Y D, REN D S, et al. Efficient modeling method for electrochemical thermal coupling of automotive lithium-ion batteries [J]. Journal of Mechanical Engineering, 2021, 57(14): 10-22.
[18]   梁新成, 张志冬, 黄国钧. 锂电池的电化学建模研究[J].西南大学学报(自然科学版),2023,45(3): 214-221.
LIANG X C, ZHANG Z D, HUANG G J. Research on electrochemical modeling of lithium batteries [J]. Journal of Southwest University(Natural Science Edition), 2023, 45(3): 214-221.
[19]   LIU Y, TANG S, LI L, et al. Simulation and parameter identification based on electrochemical-thermal coupling model of power lithium ion-battery [J]. Journal of Alloys and Compounds, 2020, 844: 156003.
[20]   张艳岗, 郭旭旭, 薛文阳, 等. 锂离子动力电池系统多尺度热安全研究[J]. 北京航空航天大学学报, 2023, 49(1): 31-44.
ZHANG Y G, GUO X X, XUE W Y, et al. Multi scale thermal safety study of lithium-ion power battery systems [J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 31-44.
No related articles found!