Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (3): 319-331    DOI: 10.3785/j.issn.1006-754X.2024.03.177
Robotic and Mechanism Design     
Design of transbronchial diagnosis robot andresearch on pose of flexible end-effector
Yanping ZHANG1(),Jie JIANG1,2(),Zhiguo FU1,Xiaoyu JIANG1,Boou WANG1
1.School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
2.Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518067, China
Download: HTML     PDF(8885KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Transrespiratory biopsy is a common surgery for diagnosing pulmonary nodules. However, due to the risk of infection of respiratory diseases and joint restrictions during manual operation, the diagnosis and treatment method combined with medical and engineering has gradually become a development trend. In order to realize the flexible movement, precise positioning and stable intervention of the flexible body in the complex bending and dynamic environment of the bronchial lumen, a master-slave collaborative remote control robot mechanism design was adopted to simulate the doctor's operating habits in traditional surgery, and an integrated mechanism principle prototype that could simultaneously control the bronchoscope and biopsy forceps was designed and build, which realized the dual-machine cooperative control for minimally invasive diagnosis and treatment through the bronchus. Then, based on the Cosserat rod theory, the force-position mapping relationship, pose and working space of the flexible end-effector of the robot were simulated and solved by MATLAB software, and the real pose of the flexible end-effector of the robot in the remote minimally invasive biopsy operation through the bronchus was analyzed by experiments, as well as the actual operation effect of the robot, which verified the accuracy of simulation results. The research results can provide a theoretical basis for multi-instrument collaborative control of transnatural duct biopsy.



Key wordsdual-device collaboration      Cosserat rod theory      force-position mapping relationship      pose analysis      minimally invasive biopsy     
Received: 13 June 2023      Published: 27 June 2024
CLC:  TH 777  
Corresponding Authors: Jie JIANG     E-mail: 641494756@qq.com;jiang42254219@163.com
Cite this article:

Yanping ZHANG,Jie JIANG,Zhiguo FU,Xiaoyu JIANG,Boou WANG. Design of transbronchial diagnosis robot andresearch on pose of flexible end-effector. Chinese Journal of Engineering Design, 2024, 31(3): 319-331.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.177     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I3/319


经支气管诊疗机器人设计及其柔性末端执行器位姿研究

经呼吸道活检是肺结节诊断中较为常见的手术,但由于呼吸道疾病存在传染风险以及手动操作时关节受限等,医工结合的诊疗方式逐渐成为发展趋势。为实现柔性体在支气管腔道内复杂弯曲动态环境下灵活运动、精准定位与稳定介入,采用主从协同式远程控制机器人机构设计,模拟传统手术中医生的操作习惯,设计并搭建能够操控支气管镜、活检钳的集成机构原理样机,以实现经支气管进行微创诊疗的双器械协同操控。然后,基于Cosserat杆理论,利用MATLAB软件对机器人柔性末端执行器的力-位映射关系、位姿和工作空间进行仿真求解,并通过实验分析机器人柔性末端执行器在经支气管的远程微创活检手术中的真实位姿以及机器人的实际运行效果,验证了仿真结果的准确性。研究结果可为经自然腔道活检术的多器械协同控制提供理论基础。


关键词: 双器械协同,  Cosserat杆理论,  力-位映射关系,  位姿分析,  微创活检 
Fig.1 Flexible end-effector of transbronchial diagnosis robot
末端执行器功能自由度执行方式行程
支气管镜

视觉

导航

3轴向移动(600±25)mm
径向旋转±180°
绳驱控弯-130°~160°
活检钳夹取病理样本2递送、撤出≤2 300 mm
张开、夹持0~15 mm

螺旋盘绕

(被动)

6.5×360°
Table 1 Function analysis of transbronchial diagnosis robot
Fig.2 Mechanism design and kinematics analysis of transbronchial diagnosis robot
Fig.3 Framework of transbronchial diagnosis robot system
Fig.4 Selection and layout of electronic control components for transbronchial diagnosis robot
Fig.5 Internal structure of flexible catheter bending section of bronchoscope
Fig.6 Simulation experiment framework for flexible end-effector
Fig.7 Force analysis and simulation model of flexible end-effector
Fig.8 Simulation result of movement state of flexible end-effector (0-5 s)
Fig.9 Simulation results of energy conversion of flexible end-effector
Fig.10 Simulation results of force-position mapping relationship of flexible end-effector
Fig.11 Dynamic simulation results of flexible end-effector motion trajectory
Fig.12 Workspace and its distribution probability of flexible end-effector
Fig.13 Physical diagram of transbronchial diagnosis robot
Fig.14 Experimental platform and principle of force-position mapping relationship test for flexible end-effector
Fig.15 Experimental results of force-position mapping relationship of flexible end-effector
Fig.16 Pose and workspace calibration experiment platform for flexible end-effector
Fig.17 Electromagnetic sensor installation diagram
Fig.18 Comparison between calibration results and simulation results of pose and workspace of flexible end-effector
Fig.19 Experimental flow for performance verification of transbronchial diagnosis robot
Fig.20 Experimental platform for performance verification of transbronchial diagnosis robot
Fig.21 Radial rotation angle-time curve of flexible end-effector
Fig.22 Axial displacement-time curve of flexible end-effector
参数测试结果
径向旋转轴向移动
运动形式往复回转往复推进
测试时间40 s30 s
行程180°210 mm
误差-0.472°~0.365°-0.06~0.06 mm
Table 2 Performance test results of transbronchial diagnosis robot
[1]   GRAETZEL C F, SHEEHY A, NOONAN D P. Robotic bronchoscopy drive mode of the Auris Monarch platform[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal, May 20-24, 2019.
[2]   GINOYA T, MADDAHI Y, ZAREINIA K. A historical review of medical robotic platforms[J]. Journal of Robotics, 2021, 2021: 6640031.
[3]   刘丹.华西医院完成全国首例国产机器人辅助经支气管镜肺结节活检术[J].首都食品与医药,2022,29(8):6-7. doi:10.3969/j.issn.1005-8257.2022.08.005
LIU D. West China Hospital completed the first domestic robot-assisted transbronchoscopic lung nodule biopsy in China[J]. Capital Food Medicine, 2022, 29(8): 6-7.
doi: 10.3969/j.issn.1005-8257.2022.08.005
[4]   白冲.支气管镜新技术在肺小结节诊断中的应用[J].诊断学理论与实践,2018,17(5):499-503.
BAI C. Application of new technology of bronchoscopy in the diagnosis of small pulmonary nodules[J]. Journal of Diagnostics Concepts & Practice, 2018, 17(5): 499-503.
[5]   王婷,张杰.机器人支气管镜技术在肺结节诊断中的应用[J].中华结核和呼吸杂志,2021,44(12):1115-1119. doi:10.3760/cma.j.cn112147-20210827-00596
WANG T, ZHANG J. Application of robotic-assisted bronchoscopy in the diagnosis of peripheral lung lesions[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2021, 44(12): 1115-1119.
doi: 10.3760/cma.j.cn112147-20210827-00596
[6]   魏巍,庄哲明,唐昭,等.基于 3-RSR 并联机构的蛇形机器人本体构型设计与运动性能研究[J].机械工程学报, 2021,57(23):21-33. doi:10.3901/JME.2021.23.021
WEI W, ZHUANG Z M, TANG Z, et al. Body configuration design and kinematic performance research of snake-like robot based on 3-RSR parallel mechanism[J]. Journal of Mechanical Engineering, 2021, 57(23): 21-33.
doi: 10.3901/JME.2021.23.021
[7]   徐灵敏,叶伟,李秦川.并联机器人逆动力学建模的几何代数方法[J].机械工程学报,2022,58(7):1-11. doi:10.3901/jme.2022.07.001
XU L M, YE W, LI Q C. Geometric algebra-based method for inverse dynamic modeling of parallel robots[J]. Journal of Mechanical Engineering, 2022, 58(7): 1-11.
doi: 10.3901/jme.2022.07.001
[8]   JANABI S F, JALALI A, WALKER I D. Cosserat rod-based dynamic modeling of tendon-driven continuum robots: a tutorial[J]. IEEE Access, 2021, 9: 68703-68719.
[9]   TILL J, ALOI V, RUCKER C. Real-time dynamics of soft and continuum robots based on Cosserat rod models[J]. The International Journal of Robotics Research, 2019, 38(6): 723-746.
[10]   ALQUMSAN A A, KHOO S, NORTON M. Robust control of continuum robots using Cosserat rod theory[J]. Mechanism and Machine Theory, 2019, 131: 48-61.
[11]   MATHEW A T, HMIDA I B, ARMANINI C, et al. SoRoSim: a MATLAB toolbox for soft robotics based on the geometric variable-strain approach[J]. IEEE Robotics & Automation Magazine, 2023, 30(3): 106-122.
[12]   SANTINA C D, DURIEZ C, RUS D. Model based control of soft robots: a survey of the state of the art and open challenges[EB/OL]. (2021-10-04)[2023-06-01]. .
[13]   马健.主从遥操作机器人位姿态误差分析及力位补偿研究[D].天津:天津工业大学,2019.
MA J. Position and attitude error analysis and force position compensation research of master-slave teleoperation robot[D]. Tianjin: Tianjin University of Technology, 2019.
[14]   杨静宁,王其晨,王永祥.形状记忆合金悬臂梁变形特性分析[J].甘肃科学学报,2019,31(1):12-16,27.
YANG J N, WANG Q C, WANG Y X. Shape memory alloy cantilever beam deformation characteristics[J]. Journal of Gansu Sciences, 2019, 31(1): 12-16, 27.
[15]   CHAUTEMS C, TONAZZINI A, BOEHLER Q, et al. Magnetic continuum device with variable stiffness for minimally invasive surgery[J]. Advanced Intelligent Systems, 2020, 2(6): 1900086.
[16]   TROISE M, GAIDANO M, PALMIERI P, et al. Preliminary analysis of a lightweight and deployable soft robot for space applications[J]. Applied Sciences, 2021, 11(6): 2558.
[17]   秦慧峰,赵永刚.非线性本构关系下圆板的大挠度问题[J].力学研究,2020,9(2):77-84.
QIN H F, ZHAO Y G. Large deflection of circular plate under nonlinear constitutive relations[J]. International Journal of Mechanics Research, 2020, 9(2): 77-84.
No related articles found!