Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (2): 210-220    DOI: 10.3785/j.issn.1006-754X.2024.03.119
Robotic and Mechanism Design     
Design and performance analysis of lower limb rehabilitation exoskeleton robot
Jiachen CHANG(),Yali HAN(),Han SUN,Chuanqi SHI,Tian ZHAO
School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing 211167, China
Download: HTML     PDF(8108KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to better assist the rehabilitation training for hemiplegic patients, a lower limb rehabilitation exoskeleton robot driven by disk motor is designed, and the effectiveness of its different rehabilitation training modes is verified through visualization research of power-assisted effect and performance analysis. Firstly, the detailed structural design for the lower limb rehabilitation exoskeleton robot was performed, and the biomechanical analysis of human-machine coupling was carried out by using OpenSim software. Then, the passive rehabilitation training experiment based on position tracking control and resistance rehabilitation training experiment were carried out, and the surface electromyographic signals were collected to verify the effectiveness of the designed lower limb rehabilitation exoskeleton robot to assist patients in rehabilitation training under different modes. The results showed that wearing lower limb rehabilitation exoskeleton robot could reduce the human knee joint torque by about 50%. In the passive rehabilitation training experiment, the following error was within -4°-8°, and the muscle activation of the target muscle group of human lower limbs showed an obvious periodic change. In the resistance rehabilitation training experiment, the muscle activation of the target muscle group of human lower limbs increased with the increase of weight. The designed lower limb rehabilitation exoskeleton robot has good sensitivity and followability, and its passive and resistance rehabilitation training modes are conducive to lower limb rehabilitation of hemiplegia patients, which has broad application prospect.



Key wordslower limb rehabilitation exoskeleton robot      rehabilitation training      biomechanical analysis      position tracking control      muscle activation     
Received: 27 February 2023      Published: 26 April 2024
CLC:  TH 89  
Corresponding Authors: Yali HAN     E-mail: cjcjstx@163.com;s966237@163.com
Cite this article:

Jiachen CHANG,Yali HAN,Han SUN,Chuanqi SHI,Tian ZHAO. Design and performance analysis of lower limb rehabilitation exoskeleton robot. Chinese Journal of Engineering Design, 2024, 31(2): 210-220.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.03.119     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I2/210


下肢康复外骨骼机器人设计与性能分析

为了更好地辅助偏瘫患者的康复训练,设计了一种基于盘式电机驱动的下肢康复外骨骼机器人,并通过助力效果可视化研究与性能分析来验证其不同康复训练模式的有效性。首先,对下肢康复外骨骼机器人的结构进行了详细设计,并利用OpenSim软件进行了人机耦合的生物力学分析。然后,开展了基于位置跟踪控制的被动康复训练实验以及抗阻康复训练实验并采集表面肌电信号,验证了所设计下肢康复外骨骼机器人在不同模式下辅助患者康复训练的有效性。结果表明,穿戴下肢康复外骨骼机器人能使人体膝关节的力矩减小50%左右;在被动康复训练实验中,跟随误差为-4°~8°,且人体下肢目标肌群的肌肉激活度呈明显的周期性变化;在抗阻康复训练实验中,人体下肢目标肌群的肌肉激活度随负重的增加而提高。所设计的下肢康复外骨骼机器人具有良好的灵敏性和跟随性,其被动及抗阻康复训练模式均有助于偏瘫患者下肢的康复,具有广阔的应用前景。


关键词: 下肢康复外骨骼机器人,  康复训练,  生物力学分析,  位置跟踪控制,  肌肉激活度 
Fig.1 Structure diagram of lower limb rehabilitation exoskeleton
Fig.2 Design of hip joint abduction and adduction drive for lower limb rehabilitation exoskeleton
Fig.3 Control block diagram of lower limb rehabilitation exoskeleton prototype system
Fig.4 Wearing site of lower limb rehabilitation exoskeleton prototype
Fig.5 Delsys wireless surface electromyography acquisition system
Fig.6 Human-machine coupling model
阈值优秀良好不合格
最大残余力/N0~1010~25>25
平均残余力/N0~55~10>10
最大残余力矩/(N·m)0~5050~75>75
平均残余力矩/(N·m)0~3030~50>50
最大位移误差/cm0~22~5>5
平均位移误差/cm0~22~4>4
最大角度误差/(o)0~22~5>5
平均角度误差/(o)0~22~5>5
Table 1 Threshold evaluation range for residual reduction results of human-machine coupling model
Fig.7 Residual force and residual torque output from human-machine coupling model
Fig.8 Comparison of variation curves of left knee joint torque of human body
Fig.9 Human-machine model with one leg swinging in a sitting position
Fig.10 Muscle strength and activation of vastus medialis and vastus lateralis under different rehabilitation training modes
Fig.11 Processing flow of surface electromyography signal
Fig.12 PD control block diagram of lower limb rehabilitation exoskeleton
Fig.13 Passive rehabilitation training experiment site
Fig.14 Motion trajectory and tracking error of knee joint during passive rehabilitation training phase
Fig.15 Muscle activation during passive rehabilitation training phase
Fig.16 Knee joint movement process during resistance rehabilitation training phase
Fig.17 Muscle activation under different swing speeds during resistance rehabilitation training phase
[1]   叶诗华,陈丽飞.脑卒中患者延续性护理需求的现状及影响因素分析[J].中国医学创新,2018,15(24):69-72. doi:10.3969/j.issn.1674-4985.2018.24.019
YE S H, CHEN L F. Analysis of status and influencing factors of continuing nursing needs of patients with stroke[J]. Medical Innovation of China, 2018, 15(24): 69-72.
doi: 10.3969/j.issn.1674-4985.2018.24.019
[2]   ESQUENAZI A, TALATY M. Robotics for lower limb rehabilitation[J]. Physical Medicine and Rehabilitation Clinics of North America, 2019, 30(2): 385-397.
[3]   程雪,白定群,彭晓华.下肢外骨骼康复机器人在脑卒中康复中的应用和研究进展[J].中国康复医学杂志,2021,36(10):1327-1332. doi:10.3969/j.issn.1001-1242.2021.10.026
CHENG X, BAI D Q, PENG X H. Application and research progress of lower limb exoskeleton rehabilitation robot in stroke rehabilitation[J]. Chinese Journal of Rehabilitation Medicine, 2021, 36(10): 1327-1332.
doi: 10.3969/j.issn.1001-1242.2021.10.026
[4]   韩稷钰,王衍鸿,万大千.下肢外骨骼康复机器人的研究进展及发展趋势[J].上海交通大学学报(医学版),2022,42(2):241-246.
HAN J Y, WANG Y H, WAN D Q. Research progress and development trend of lower extremity exoskeleton rehabilitation robot[J]. Journal of Shanghai Jiaotong University (Medical Science), 2022, 42(2): 241-246.
[5]   徐飞,佀国宁,程云章,等.下肢康复机器人结构设计的研究进展[J].北京生物医学工程,2018,37(1):96-102. doi:10.3969/j.issn.1002-3208.2018.01.016
XU F, SI G N, CHENG Y Z, et al. Research advances in structural design of lower limb rehabilitation robot[J]. Beijing Biomedical Engineering, 2018, 37(1): 96-102.
doi: 10.3969/j.issn.1002-3208.2018.01.016
[6]   李龙飞,朱凌云,苟向锋.可穿戴下肢外骨骼康复机器人研究现状与发展趋势[J].医疗卫生装备,2019,40(12):89-97.
LI L F, ZHU L Y, GOU X F. Current status and development trend of wearable lower-limb exoskeleton rehabilitation robot[J]. Chinese Medical Equipment Journal, 2019, 40(12): 89-97.
[7]   褚梦秋,佀国宁,李根生,等.下肢康复机器人控制系统研究进展[J].北京生物医学工程,2018,37(6):643-656. doi:10.3969/j.issn.1002-3208.2018.06.014
CHU M Q, SI G N, LI G S, et al. Research progress on control system of lower limb rehabilitation robot[J]. Beijing Biomedical Engineering, 2018, 37(6): 643-656.
doi: 10.3969/j.issn.1002-3208.2018.06.014
[8]   SUZUKI K, MITO G, KAWAMOTO H, et al. Intention-based walking support for paraplegia patients with robot suit HAL[J]. Advanced Robotics, 2007, 21(12): 1441-1469.
[9]   BANALA S K, AGRAWAL S K, KIM S H, et al. Novel gait adaptation and neuromotor training results using an active leg exoskeleton[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 216-225.
[10]   刘亚丽,宋遒志,赵明升,等.基于力位混合控制的踝关节外骨骼机器人四段式助力技术[J].兵工学报,2021,42(12):2722-2730. doi:10.3969/j.issn.1000-1093.2021.12.020
LIU Y L, SONG Q Z, ZHAO M S, et al. The four-stage assisted technology of flexible ankle exoskeleton robot based on force and position hybrid control[J]. Acta Armamentarii, 2021, 42(12): 2722-2730.
doi: 10.3969/j.issn.1000-1093.2021.12.020
[11]   赵广宇,何龙,李新俊,等.基于支持向量机的外骨骼机器人灵敏度放大控制[J].计算机测量与控制,2016,24(9):211-214.
ZHAO G Y, HE L, LI X J, et al. Support vector machine based sensitivity amplification control for a lower extremity exoskeleton[J]. Computer Measurement and Control, 2016, 24(9): 211-214.
[12]   石征锦,秦朋,耿枫,等.基于sEMG的一种下肢外骨骼机器人康复训练控制策略[J].信息技术与信息化,2021(1):244-245. doi:10.3969/j.issn.1672-9528.2021.01.075
SHI Z J, QIN P, GENG F, et al. A lower limb exoskeleton robot rehabilitation training control strategy based on sEMG[J]. Information Technology and Informatization, 2021(1): 244-245.
doi: 10.3969/j.issn.1672-9528.2021.01.075
[13]   王成焘,王冬梅,白雪岭,等.人体骨肌系统生物力学[M].北京:科学出版社,2015.
WANG C T, WANG D M, BAI X L, et al. Biomechanics of human skeletal muscle system[M]. Beijing: Science Press, 2015.
[14]   全国人类工效学标准化技术委员会. 中国成年人人体尺寸: [S].北京:中国标准出版社,2023:3-23.
National Ergonomics Standardization Technical Committee. Human dimensions of Chinese adults: [S]. Beijing: China Standards Press, 2023: 3-23.
[15]   韩亚丽,王兴松.人体行走下肢生物力学研究[J].中国科学:技术科学,2011,41(5):592-601.
HAN Y L, WANG X S. Biomechanical study of human walking lower limb[J]. Scientia Sinica (Technologica), 2011, 41(5): 592-601.
[16]   DELP S L, LOAN J P, HOY M G, et al. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(8): 757-767.
[17]   DELP S L, ANDERSON F C, ARNOLD A S, et al. OpenSim: open source to create and analyze dynamic simulations of movement[J]. IEEE Transactions on Bio-medical Engineering, 2007, 54(11): 1940-1950.
[18]   KAWAMOTO H, HAYASHI T, SAKURAI T, et al. Development of single leg version of HAL for hemiplegia[C]//2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, MN, Sep. 3-6, 2009.
[19]   RODRÍGUEZ-FERNÁNDEZ A, LOBO-PRAT J, FONT-LLAGUNES J M. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments[J]. Journal of NeuroEngineering and Rehabilitation, 2021, 18: 22.
[20]   CHAND T. An algorithm for generating muscle-actuated simulations of long-duration movements[C]//Biomedical Computation at Stanford (BCATS) Symposium. Palo Alto, CA: [S.l.], 2006: 31.
[21]   周瑞.人机耦合下肢外骨骼机器人运动分析及其仿真[D].兰州:兰州理工大学,2020:46-47.
ZHOU R. Kinematics analysis and simulation of human-machine coupled lower extremity exoskeleton robot[D]. Lanzhou: Lanzhou University of Technology, 2020: 46-47.
[1] Qing-xiang LIU,Bing-jing GUO,Jian-hai HAN,Xiang-pan LI,Ming-xiang HUANG. Somatosensory interactive upper-limb mirror rehabilitation training robot system[J]. Chinese Journal of Engineering Design, 2022, 29(2): 143-152.
[2] XU Gang, XIANG Kui, TANG Bi-wei, PANG Mu-ye. Estimation method of ankle joint impedance based on series elastic principle and AUDI algorithm[J]. Chinese Journal of Engineering Design, 2020, 27(5): 552-559.
[3] GUO Bing-jing, MAO Yong-fei, HAN Jian-hai, LI Xiang-pan, MA Jin-qi. Human-robot interactive information sensing system for gait rehabilitation training robot[J]. Chinese Journal of Engineering Design, 2019, 26(3): 252-259.