Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (5): 617-625    DOI: 10.3785/j.issn.1006-754X.2023.00.071
Product Innovation Design     
Design of feed switching system for large aperture fully movable radio telescope
Fenghui YANG(),Min WANG,Liang DONG,Shuobiao SHI
Yunnan Observatory, Chinese Academy of Sciences, Kunming 650216, China
Download: HTML     PDF(3854KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to further meet the needs of lunar exploration, deep space exploration and other astronomical observation tasks, the Kunming 40 m aperture fully movable radio telescope, which was equipped with only one S/X dual-frequency feed source at the initial stage of design, was upgraded and its feed switching system was developed. On the basis of not changing the existing antenna structure and optical path, the original S/X dual-frequency feed source was removed, a new S/X dual-frequency feed source was installed, and the C and Ku frequency feed sources were added. The detailed design and implementation schemes of the feed switching system were given, and the automatic, fast and reliable switching among the three feed sources was realized. The performance of the antenna after feed modification was tested, and the results showed that the main performance indexes of the antenna were improved. After the modification of the feed source and feed switching system, the large aperture fully movable radio telescope had the ability to receive multiple frequency bands, and can complete the astronomical observation and deep space exploration tasks with more frequency bands, improving the observation efficiency and scientific research output of the telescope.



Key wordsfeed switching system      feed switching mechanism      feed horn      feed switching control      radio telescope      antenna performance     
Received: 03 November 2022      Published: 03 November 2023
CLC:  TP 273  
Cite this article:

Fenghui YANG,Min WANG,Liang DONG,Shuobiao SHI. Design of feed switching system for large aperture fully movable radio telescope. Chin J Eng Design, 2023, 30(5): 617-625.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.071     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I5/617


大孔径全可动射电望远镜换馈系统设计

为了进一步满足探月工程、深空探测和其他天文观测任务的需求,对设计初期只配置了一个S/X双频馈源的昆明40 m孔径全可动射电望远镜进行升级改造,研制了其换馈系统。在不改变现有天线结构及光路的基础上,拆除了原S/X双频馈源,安装了新的S/X双频馈源,并增加了C频段、Ku频段馈源;给出了换馈系统的详细设计和实施方案,实现了3个馈源间自动快速可靠的切换。对馈源改造之后的天线性能进行了测试,结果表明,天线的主要性能指标有所提升。馈源及换馈系统改造之后,大孔径全可动射电望远镜具有多频段接收能力,能够完成更多频段的天文观测和深空探测任务,提高了望远镜的观测效率和科研产出。


关键词: 换馈系统,  换馈机构,  馈源喇叭,  换馈控制,  射电望远镜,  天线性能 
Fig.1 Radio telescope
Fig.2 Composition of feed switching system
Fig.3 Schematic of feed source layout with one dimensional clock pendulum
Fig.4 Schematic of geometrical parameters of Cassegrain antenna with dual reflectors
参数量值
主反射面直径Dm40 m
实体面直径Dw26 m
主反射面焦距f13.2 m
副反射面直径Ds4.2 m
副反射面边缘照射角θ11.8°
主反射面照射角φ74.293°
Table 1 Geometric parameter values of Cassegrain antenna with dual reflectors
Fig.5 Structure of S/X dual-frequency feed source
Fig.6 Output interface of S/X dual-frequency feed source
Fig.7 Schematic of corrugated horn of C frequency feed source
Fig.8 Schematic of corrugated horn of Ku frequency feed source
Fig.9 Simulation model of antenna radiation characteristics
频段 频率/GHz第1副瓣电平/dB

天线

增益/dB

天线

效率

S2.2-19.457.610.68
2.3-20.458.010.69
X7.6-21.368.520.69
8.3-26.369.390.72
9.0-24.170.440.77
C4.5-28.263.800.67
5.7-28.665.840.67
6.9-26.767.610.69
Ku12.0-27.4572.740.75
14.1-28.1474.180.75
15.5-28.6175.130.77
Table 2 Simulation results of antenna radiation characteristics
Fig.10 Structure of feed switching system
Fig.11 Feed source position during each frequency feed source working
Fig.12 Finite element model of feed switching system
Fig.13 Force analysis results of feed source with antenna at upturn position
馈源天线状态换馈系统应力/MPa天线轴向变形/mm天线z向变形/mm电动推杆推力/N
S/X双频馈源朝天25.390.20-422
指平56.760.771.6349 439
C频段馈源朝天22.180.48-18 409
指平77.381.303.0166 783
Ku频段馈源朝天30.040.4711 110
指平60.660.871.4143 219
Table 3 Force analysis results of feed switching system with antenna at different attitudes
Fig.14 Schematic of working principle of feed switching unit
Fig.15 Remote control interface of upper computer
Fig.16 Installation and positioning of feed sleeve and pitching cylinder
频段加工、装配误差/mm推杆运动、伺服控制误差/mm天线z向变形/mm指向精度/(″)
S/X0.700.641.635.36
C3.018.01
Ku1.414.97
Table 4 Antenna pointing accuracy in different frequency bands caused by feed switching system
Fig.17 Object of flexible rain cover for feed source
工作频率/GHz天线效率(45°)天线噪声温度/K电压驻波比圆极化轴比/dB
要求值测试值要求值测试值要求值测试值要求值测试值
2.2~2.31≥0.600.61≤64.056.32≤1.2∶11.2∶1≤1.00.75
4.5~6.9≥0.540.59≤35.034.75≤1.3∶11.25∶1≤1.51.0
7.6~9.0≥0.500.54≤45.031.63≤1.3∶11.3∶1≤1.31.1
12.0~15.5≥0.390.41≤50.048.35≤1.3∶11.3∶1≤1.31.2
Table 5 Main performance index values of antenna after feed modification
[1]   张巨勇,施浒立,张洪波,等.40 m射电望远镜天线副面和馈源偏移误差分析[J].天文研究与技术,2007,4(1):42-47. doi:10.3969/j.issn.1672-7673.2007.01.006
ZHANG J Y, SHI H L, ZHONG H B, et al. Error analysis and compensation for sub-reflector and feed of 40 m radio telescope antenna[J]. Astronomical Research & Technology, 2007, 4(1): 42-47.
doi: 10.3969/j.issn.1672-7673.2007.01.006
[2]   徐国华,漆一宏,段宝岩,等. 变形反射面天线效率与馈源相位中心的研究[J].西安电子科技大学学报,1990,17(4):63-70.
XU G H, QI Y H, DUAN B Y, et al. A study of the phase center of the antenna feeder for deformed reflector[J]. Journal of Xidian University, 1990,17(4): 63-70.
[3]   ARENAS J E G, CANCIO A B, PEREZ J A L, et al. Improvement of a cassegrain antenna by secondary surface corrections[J]. Microwave Journal, 1999, 42(3): 82, 84, 86, 88, 90, 93-94, 96, 98.
[4]   李东伟,段玉虎. 大型反射面天线设计及关键技术[M]. 西安:西安电子科技大学出版社, 2021.
LI D W, DUAN Y H. Design and key technologies of large reflective surface antennas[M]. Xi'an: Xidian University Press, 2021.
[5]   金勇. 四十米全向可控天线结构系统研究[D].西安:西安电子科技大学,2012.
JIN Y. Research on the omnidirectional controllable structure system of 40-meter antenna[D]. Xi'an: Xidian University, 2012.
[6]   杜彪,张文静,杨可忠. 一种新颖L/C双频段波纹喇叭模变换器[J].无线电工程,2007,37(3):39-40. doi:10.3969/j.issn.1003-3106.2007.03.014
DU B, ZHANG W J, YANG K Z. A novel mode converter for L/C dual band corrugated horn[J]. Radio Engineering, 2007, 37(3): 39-40.
doi: 10.3969/j.issn.1003-3106.2007.03.014
[7]   张成全,高富民.高性能C、X宽频带双频馈源设计[J].通信与测控,1997(2):10-16.
ZHANG C Q, GAO F M. Design of high performance C and X broadband dual feed sources[J]. Communication and Measurement and Control, 1997(2): 10-16.
[8]   朱钟淦,叶尚辉.天线结构设计[M].北京:国防工出版社,1980:221-222.
ZHU Z G, YE S H. Antenna structure design[M]. Beijing: National Defense Industry Press, 1980: 221-222.
[9]   赵聪,许谦,王娜,等. 新疆奇台110米射电望远镜主焦点馈源换馈方案研究[J].天文研究与技术,2017,14(2):172-178.
ZHAO C, XU Q, WANG N, et al. The prime focus receiver positioner design of Xinjiang Qitai 110 m radio telescope [J]. Astronomical Research & Technology, 2017, 14(2): 172-178.
[10]   刘岩,钱宏亮,范峰.大型射电望远镜结构总体方案研究[J]. 红外与激光工程,2015(7):2097-2104. doi:10.3969/j.issn.1007-2276.2015.07.023
LIU Y, QIAN H L, FAN F. Research on large radio telescope structure scheme[J]. Infrared and Laser Engineering, 2015(7): 2097-2104.
doi: 10.3969/j.issn.1007-2276.2015.07.023
[11]   魏雪梅. 超大型全可动反射面天线近似动力学模型的建立[D].西安:西安电子科技大学,2014.
WEI X M. Establishment of an approximate dynamic model for a super large fully movable reflector antenna [D]. Xi'an: Xidian University, 2014.
[12]   陈庚超. ANSYS软件在抛物面天线结构设计中的应用[J].机械设计与制造,2004(1):13-14. doi:10.3969/j.issn.1001-3997.2004.01.006
CHEN G C. The application of ANSYS software in paraboloidal antenna structure design[J]. Machinery Design & Manufacture, 2004(1): 13-14.
doi: 10.3969/j.issn.1001-3997.2004.01.006
[13]   刘宏,宋建波,王文俊.大射电望远镜馈源支撑系统最优化研究[J].矿业研究与开发,2006,26(5):59-62. doi:10.3969/j.issn.1005-2763.2006.05.019
LIU H, SONG J B, WANG W J. Study on the optimization of the feed support system of large aperture spherical radio telescope[J]. Mining Research and Development, 2006, 26(5): 59-62.
doi: 10.3969/j.issn.1005-2763.2006.05.019
[14]   付铁,丁洪生,李成刚,等. 大射电望远镜FAST馈源支撑两级调整机构联调机理分析[J]. 北京理工大学学报,2002,22(5):560-563. doi:10.3969/j.issn.1001-0645.2002.05.008
FU T, DING H S, LI C G, et al. Analysis of the joint adjustment mechanism of the two-stage adjustment mechanism of the FAST feed support of the large radio telescope[J]. Journal of Beijing University of Technology, 2002, 22(5): 560-563.
doi: 10.3969/j.issn.1001-0645.2002.05.008
[15]   张磊,廖鑫江.大口径天线伺服系统的建模及控制算法设计[J].华南理工大学学报(自然科学版),2013,41(5):22-27,33.
ZHANG L, LIAO X J. Modeling and control algorithm design of large-diameter antenna servo system[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(5): 22-27, 33.
[16]   郝娟,肖定国,张建民. 大射电望远镜馈源精调平台控制系统的研究与开发[J].机械科学与技术,2003():62-63.
HAO J, XIAO D G, ZHANG J M. Research and development of the control system for a fine-tuning platform of FAST[J]. Mechanical Science and Technology, 2003(): 62-63.
[17]   苏玉鑫,段宝岩. 大射电望远镜馈源轨迹跟踪自适应控制[J].控制理论与应用,2002,19(1):121-124. doi:10.3969/j.issn.1000-8152.2002.01.026
SU Y X, DUAN B Y. Adaptive predictive tracking control of feed for large radio telescope[J]. Control Theory & Applications, 2002, 19(1): 121-124.
doi: 10.3969/j.issn.1000-8152.2002.01.026
[18]   佘海波. 大射电望远镜悬索馈源支撑系统的控制硬件设计与实现[D].西安:西安电子科技大学,2002.
SHE H B. Design and implementation of control hardware for cable feed support system of large radio telescope[D]. Xi'an: Xidian University, 2002.
[19]   李曼,仇原鹰. FAST馈源柔索支撑与高精度动态定位技术及应用[J].科技创新与品牌,2021(5):45-47. doi:10.3969/j.issn.1673-940X.2021.05.015
LI M, QIU Y Y. FAST feeder cable support and high-precision dynamic positioning technology and application[J]. Sci-Tech Innovations and Brands, 2021(5): 45-47.
doi: 10.3969/j.issn.1673-940X.2021.05.015
[20]   秦顺友,许德森. 卫星通信地面站天线工程测量技术[M]. 北京: 人民邮电出版社, 2006.
QIN S Y, XU D S. Engineering measurement technology for satellite communication ground station antennas[M]. Beijing: People's Posts and Telecommunications Press, 2006.
[21]   袁惠仁,彭云楼,薛吟章,等.天线参数的射电天文测量[M]. 北京: 电子工业出版社, 1987.
YUAN H R, PENG Y L, XUAN Y Z, et al. Radio astronomical measurement of antenna parameters[M]. Beijing: Electronic Industry Press, 1987.
[1] YU Li-Ming, SUO Shuang-Fu, JI Lin-Hong, REN Ge-Xue. Structural Research on First Feed-support System of FAST[J]. Chin J Eng Design, 2001, 8(4): 173-175.