Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (1): 48-56    DOI: 10.3785/j.issn.1006-754X.2023.00.001
Optimization Design     
Study on the influence of support stiffness and tooth surface coating on the meshing characteristics of helical gear pair
Ji-peng JIA1(),Li-bin ZANG1,Yong CHEN1(),Xiao-zhe LIN2,Jie CHEN3,Yi-min WU1
1.Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, Hebei University of Technology, Tianjin 300130, China
2.Geely Powertrain Research Institute, Ningbo 315336, China
3.Zhejiang Geely Powertrain Co. Ltd. , Ningbo 315800, China
Download: HTML     PDF(3793KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Support stiffness has an important influence on the meshing quality of the gear pair of automatic transmission. It is of great significance to study the influence of the support stiffness and the tooth surface coating on the meshing characteristics of the helical gear pair. Taking the first helical gear pair of a seven-shift double-clutch automatic transmission as the research object, two rigid-flexible coupling models of the gear shaft system with different support stiffness were established, and the influence of the support stiffness on the meshing characteristics of the helical gear pair under different working conditions was analyzed; the tooth profile and tooth direction parameters of the gear with/without manganese phosphate conversion coating were obtained through the FCL-250H gear precision test bench, and were substituted into the finite element model for simulation analysis; the gear contact fatigue pitting test was carried out to compare the contact fatigue life of the gear before and after the coating treatment, and the strengthening mechanism of the coating was further revealed from the aspects of the gear surface morphology, dynamic performance and running-in performance. The results showed that the support stiffness decreased with the increase of gear shaft span, and the maximum load per unit length of gear and the amount of meshing dislocation were more sensitive to input torque changes; after running-in, the gear with coating was more conducive to meshing, and its fatigue life was improved. The research results provide a reference for the structural optimization of the gear transmission system of automotive automatic transmission and the improvement of the gear fatigue life.



Key wordssupport stiffness      helical gear of automatic transmission      manganese phosphate coating      meshing dislocation      running-in characteristic     
Received: 17 December 2021      Published: 06 March 2023
CLC:  U 463.2  
Corresponding Authors: Yong CHEN     E-mail: jjp3690@163.com;chenyong1585811@163.com
Cite this article:

Ji-peng JIA,Li-bin ZANG,Yong CHEN,Xiao-zhe LIN,Jie CHEN,Yi-min WU. Study on the influence of support stiffness and tooth surface coating on the meshing characteristics of helical gear pair. Chin J Eng Design, 2023, 30(1): 48-56.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.001     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I1/48


支承刚度及齿面涂层对斜齿轮副啮合特性的影响研究

支承刚度对自动变速器齿轮副的啮合质量有着重要影响,研究支承刚度及齿面涂层对斜齿轮副啮合特性的影响具有重要意义。以某七挡双离合自动变速器的一挡斜齿轮副为研究对象,建立了2种不同支承刚度的齿轴系统刚柔耦合模型,分析了不同工况下支承刚度对斜齿轮副啮合特性的影响规律;通过FCL?250H齿轮精测试验台得到有/无磷酸锰转化涂层齿轮的齿形齿向参数,并将其代入有限元模型进行仿真分析;进行齿轮接触疲劳点蚀实验,对比齿面涂层处理前后齿轮的接触疲劳寿命,并从齿轮表面形貌、动力性能及跑合性能等角度进一步揭示了涂层的强化机理。研究结果表明:齿轴跨度增大,支承刚度减小,则齿轮单位长度所受最大载荷和啮合错位量对输入扭矩的变化更为敏感;有涂层齿轮跑合后更有利于啮合,其疲劳寿命得到提高。研究结果为汽车自动变速器齿轮传动系统的结构优化和齿轮疲劳寿命的提高提供了参考。


关键词: 支承刚度,  自动变速器斜齿轮,  磷酸锰涂层,  啮合错位,  跑合特性 
Fig.1 Schematic of gear meshing dislocation under gear shaft deformation
Fig.2 Schematic of gear meshing line coordinate
Fig.3 Models of gear transmission system and first gear box
参数主动齿轮从动齿轮
齿数1760
齿宽/mm19.816.9
变位系数0.372 1-0.099 4
模数/mm2.1
压力角/(°)17.5
螺旋角/(°)29
中心距/mm93
密度/(kg·m-3)7 840
弹性模量/GPa210
泊松比0.3
Table 1 Gear pair parameters
Fig.4 Rigid-flexible coupling model of gears with different support stiffness
Fig.5 Distribution nephogram of load on driven gear tooth surface
Fig.6 Variation of load on driven gear tooth surface under different input torques
齿轮类别理论值/μm仿真值/μm误差/%
大支承跨度21.7822.412.79
小支承跨度2.822.912.95
Table 2 Comparison between theoretical value and simulation value of gear meshing dislocation
输入扭矩/(N·m)啮合错位量绝对值/μm
大支承跨度小支承跨度
14013.772.19
17016.682.46
20019.562.70
23022.412.91
26025.243.09
29028.043.25
Table 3 The amount of gear meshing dislocation under different input torques
Fig.7 Comparison of amount of meshing dislocation under different input rotate speed
Fig.8 Gear physical diagram
Fig.9 Gear contact fatigue pitting test platform
Fig.10 Gear box
Fig.11 Test results of gear tooth direction precision
Fig.12 Number of gear fatigue endurance cycles
Fig.13 Fatigue pitting state of gear tooth surface
Fig.14 Contact mark between box and gear
Fig.15 Transmission error of gear pair under different input torques
Fig.16 Distribution nephogram of load on gear tooth surface with/without coating
Fig.17 Gear tooth surface state after running-in
Fig.18 Surface roughness of gear before and after running-in
Fig.19 Gear vibration acceleration
[1]   PENG Shan-dong, DING Han, ZHANG Guan, et al. New determination to loaded transmission error of the spiral bevel gear considering multiple elastic deformation evaluations under different bearing supports[J]. Mechanism and Machine Theory, 2019, 137: 37-52.
[2]   白恩军,谢里阳,佟安时,等.考虑齿轮轴变形的斜齿轮接触分析[J].兵工学报,2015,36(10):1975-1981. doi:10.3969/j.issn.1000-1093.2015.10.021
BAI En-jun, XIE Li-yang, TONG An-shi, et al. The contact analysis of helical gear in considering gear shaft deformation[J]. Acta Armamentarii, 2015, 36(10): 1975-1981.
doi: 10.3969/j.issn.1000-1093.2015.10.021
[3]   陈勇,臧立彬,巨东英,等.高强度汽车齿轮表面强化技术的研究现状和发展趋势[J].中国表面工程,2017,30(1):1-15. doi:10.11933/j.issn.1007-9289.20161013003
CHEN Yong, ZANG Li-bin, JU Dong-ying, et al. Research status and development trend on strengthening technology of high strength automobile gear surface[J]. China Surface Engineering, 2017, 30(1): 1-15.
doi: 10.11933/j.issn.1007-9289.20161013003
[4]   MOORTHY V, SHAW B A. An observation on the initiation of micro-pitting damage in as-ground and coated gears during contact fatigue[J]. Wear, 2013, 297(1/2): 878-884.
[5]   ZANG Li-bin, CHEN Yong, WU Yi-min, et al. Tribological performance of Mn3(PO4)2 coating and PC/MoS2 coating in rolling-sliding and pure sliding contacts with gear oil[J]. Tribology International, 2021, 153: 106642.
[6]   白学斌,刘志勇,张晓丽,等.汽车变速器齿轮偏载点蚀失效分析及优化设计[J].传动技术,2017,31(2):8-12,17. doi:10.3969/j.issn.1006-8244.2017.02.002
BAI Xue-bin, LIU Zhi-yong, ZHANG Xiao-li, et al. The failure analysis and optimization design of gear pitting corrosion in vehicle transmissions[J]. Drive System Technique, 2017, 31(2): 8-12, 17.
doi: 10.3969/j.issn.1006-8244.2017.02.002
[7]   贺敬良,何畅然,吴序堂,等.变速箱结构柔性对动态特性的影响分析[J].中国机械工程,2015,26(15):2010-2015. doi:10.3969/j.issn.1004-132X.2015.15.005
HE Jing-liang, HE Chang-ran, WU Xu-tang, et al. Analysis of influences of gearbox flexibility on dynamic characteristics[J]. China Mechanical Engineering, 2015, 26(15): 2010-2015.
doi: 10.3969/j.issn.1004-132X.2015.15.005
[8]   郑光泽,黄修鹏,郭栋.柔性壳体对变速器齿轮副动态啮合特性的影响分析[J].振动与冲击,2017,36(13):140-145.
ZHENG Guang-ze, HUANG Xiu-peng, GUO Dong. Effects of flexible gearbox body on dynamic meshing performance of its gear pair[J]. Journal of Vibration and Shock, 2017, 36(13): 140-145.
[9]   陈锐博,张建杰,周建星,等.含轴向偏载的行星齿轮传动系统动态特性研究[J].振动与冲击,2017,36(20):180-187.
CHEN Rui-bo, ZHANG Jian-jie, ZHOU Jian-xing, et al. A study on the dynamic characteristics of a planetary gear system with considering contact tooth surface[J]. Journal of Vibration and Shock, 2017, 36(20): 180-187.
[10]   WEI Jing, GAO Pan, HU Xing-long, et al. Effects of dynamic transmission errors and vibration stability in helical gears[J]. Journal of Mechanical Science and Technology, 2014, 28(6): 2253-2262.
[11]   郭凡,张俊.计入行星架柔性的行星传动啮合特性分析及修形可靠性研究[J].机械传动,2014,38(9):1-4.
GUO Fan, ZHANG Jun. Analysis of the mesh characteristic and study on the modification reliability for planetary gear train with flexible carrier[J]. Journal of Mechanical Transmission, 2014, 38(9): 1-4.
[12]   陈思雨,唐进元,王志伟,等.修形对齿轮系统动力学特性的影响规律[J].机械工程学报,2014,50(13):59-65. doi:10.3901/jme.2014.13.059
CHEN Si-yu, TANG Jin-yuan, WANG Zhi-wei, et al. Effect of modification on dynamic characteristics of gear transmissions system[J]. Journal of Mechanical Engineering, 2014, 50(13): 59-65.
doi: 10.3901/jme.2014.13.059
[13]   WANG Shuai-shuai, ZHU Cai-chao, SONG Chao-sheng, et al. Effects of gear modifications on the dynamic characteristics of wind turbine gearbox considering elastic support of the gearbox[J]. Journal of Mechanical Science and Technology, 2017, 31(3): 1079-1088.
[14]   LI Shu-ting. Effects of misalignment error, tooth modifications and transmitted torque on tooth engagements of a pair of spur gears[J]. Mechanism and Machine Theory, 2015, 83: 125-136.
[15]   王丽萍,徐颖强,崔艳梅,等.齿轮涂层接触应力场分析及应用[J].机械设计与制造,2012 (11):80-82. doi:10.3969/j.issn.1001-3997.2012.11.028
WANG Li-ping, XU Ying-qiang, CUI Yan-mei, et al. Contact stress analysis and application of the coatings on gear[J]. Machinery Design & Manufacture, 2012 (11): 80-82.
doi: 10.3969/j.issn.1001-3997.2012.11.028
[16]   石万凯,廖宜剑,李良军,等.重载齿轮涂层承载能力的仿真分析[J].北京工业大学学报,2014,40(5):661-666. doi:10.11936/bjutxb2014050661
SHI Wan-kai, LIAO Yi-jian, LI Liang-jun, et al. Finite element analysis of load capacity of heavy-load transmitting gear coating[J]. Journal of Beijing University of Technology, 2014, 40(5): 661-666.
doi: 10.11936/bjutxb2014050661
[17]   ZHOU Ye, ZHU Cai-chao, LIU Huai-ju, et al. A numerical study on the contact fatigue life of a coated gear pair under EHL[J]. Industrial Lubrication and Tribology, 2018, 70(1): 23-32.
[18]   XIAO Yang-yi, FU Li-yang, LUO Jing, et al. Nonlinear dynamic characteristic analysis of a coated gear transmission system [J]. Coatings, 2020, 10(1): 39.
[19]   陈勇,周慧东,臧立彬,等.汽车变速器表面涂层齿轮疲劳性能试验与接触强度研究[J].机械传动,2020,44(6):18-24.
CHEN Yong, ZHOU Hui-dong, ZANG Li-bin, et al. Study on the fatigue performance test and contact strength of automatic transmission gear with coating[J]. Journal of Mechanical Transmission, 2020, 44(6): 18-24.
[20]   HOUSER D R, HARIANTO J, TALBOT D. Gear mesh misalignment[J]. Gear Solutions, 2006, 6: 34-43.
[21]   International Organization for Standardization. Calculation of load capacity of spur and helical gears-Part 1: basic principles, introduction and general influence factors: [S]. London: British Standards Institution, 2006: 39-51.
[22]   唐进元.齿轮传递误差计算新模型[J].机械传动,2008,32(6):13-14. doi:10.3969/j.issn.1004-2539.2008.06.004
TANG Jin-yuan. Modeling of gear transmission error[J]. Journal of Mechanical Transmission, 2008, 32(6): 13-14.
doi: 10.3969/j.issn.1004-2539.2008.06.004
[23]   臧立彬,陈勇,冉立新,等.带磷酸锰转化涂层的自动变速器齿轮疲劳特性的试验研究[J].汽车工程,2017,39(10): 1203-1210.
ZANG Li-bin, CHEN Yong, RAN Li-xin, et al. An experimental study on the fatigue characteristics of automatic transmission gears with manganese phosphate conversion coating[J]. Automotive Engineering, 2017, 39(10): 1203-1210.
No related articles found!