Please wait a minute...
Chinese Journal of Engineering Design  2019, Vol. 26 Issue (3): 299-304    DOI: 10.3785/j.issn.1006-754X.2019.03.008
Optimization Design     
Analysis of coupling and packaging process for photodiode of bi-directional optical sub-assembly
YAN Ke, ZHANG Fan, ZHONG Shun-shun, SHU Bin, QI Yuan-jing
College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
Download: HTML     PDF(2879KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Responsivity of photodiode directly affects the performance of the bi-directional optical sub-assembly (BOSA), and the coupling and packaging of the photodiode play an important role in production. In order to systematically analyze the influence of various offset factors of BOSA on the coupling of the photodiode, the photodiode current responsivity was selected as the coupling standard for experiment, and the improvement measures in the coupling and packaging process of the BOSA photodiode were obtained through the analysis of the experimental results. Referring to the actual optical path of BOSA, a fiber-filter-chip coupling model was established to simulate the relationship between beam offset and coupling efficiency. The offset generated in the BOSA coupling and packaging was studied and its effect on the coupling efficiency of the photodiode was analyzed. The coupling experiment was then performed on the BOSA photodiode using an automatic coupling device. The effects of the angular offset of filter, the height difference of filter-photodiode lens and the horizontal offset of photodiode lens on the coupling efficiency were analyzed. The experimental results showed that the horizontal offset of photodiode lens had the greatest influence on the coupling efficiency, and the angular offset of filter and the height difference of the filter-photodiode lens had little effect on the coupling efficiency. The research results provide systematic theoretical guidance for the coupling and packaging of BOSA photodiode, which has reference value for actual production.



Key wordsbi-directional optical sub-assembly      photodiode      responsivity      offset      coupling efficiency     
Received: 12 November 2018      Published: 28 June 2019
CLC:  TH 162  
Cite this article:

YAN Ke, ZHANG Fan, ZHONG Shun-shun, SHU Bin, QI Yuan-jing. Analysis of coupling and packaging process for photodiode of bi-directional optical sub-assembly. Chinese Journal of Engineering Design, 2019, 26(3): 299-304.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2019.03.008     OR     https://www.zjujournals.com/gcsjxb/Y2019/V26/I3/299


双向光收发组件探测器端耦合和封装工艺分析

探测器响应度直接影响双向光收发组件(bi-directional optical sub-assembly,BOSA)的性能,探测器端的耦合和封装在BOSA生产中占据重要地位。为了系统分析BOSA生产中各偏移因素对探测器端耦合的影响,选择探测器电流响应度作为耦合标准进行实验,并通过分析实验结果来得出BOSA探测器端耦合和封装过程中的改进措施。参考BOSA的实际光路,建立光纤-波片-芯片耦合模型,模拟了光束偏移与耦合效率的关系;研究了BOSA耦合和封装工艺中产生的偏移,并分析它们对探测器端耦合效率的影响。随后使用自动耦合设备,对BOSA探测器端进行耦合实验,并分析波片角度偏移、波片与探测器透镜的高度差、探测器透镜水平偏移对耦合效率的影响。实验结果表明:探测器透镜水平偏移对耦合效率的影响最大,波片角度偏移、波片与探测器透镜的高度差对耦合效率的影响较小。研究结果为BOSA探测器端的耦合和封装提供了系统的理论指导,对BOSA的实际生产有一定参考价值。


关键词: 双向光收发组件,  探测器,  响应度,  偏移,  耦合效率 

1 RUANYi, NINGTi-gang, PEILi, et al. Study on mainstream photodetector in optical communication[J].Electro-Optic Technology Application, 2008, 23(3): 9-12.
2 WANGQi-ming, ZHAOLing-juan, ZHUHong-liang, et al. Development status of optical fiber communication active devices[J]. Telecommunications Science, 2016, 5(1): 10-23.
3 BRUZZIM,BALDIA,CARNEVALEE A,et al. Conversion efficiency of Si-InGaAs and GaAsP-Si-Ge lateral beam splitting photovoltaic devices[J].Measurement,2018,119(1):102-107.doi:10.1016/j.measurement.2018.01.035
4 YUChao,QIUJia-wei,XIAHai-yun,et al. Compact and lightweight 1.5 mum lidar with a multi-mode fiber coupling free-running InGaAs/InP single-photon detector[J].The Review of Scientific Instruments, 2018, 89(10):103-106. doi:10.1063/1.5047472
5 MODe-feng,LIUDa-fu, XUQin-fei, et al. Influencing factors of package and coupling efficiency of InGaAs fiber detector [J]. Infrared, 2012, 33(3):17-20.
6 WIECZOREKA, YANGH, ROYCROFTB. PIN-photodiode with a large spot size input waveguide[J]. Optical and Quantum Electronics, 2013, 45(4): 365-371. doi:10.1007/s11082-012-9639-z
7 HANJ H, LHEEZ. Analysis of two-dimensional coupling efficiency for rear-facet emission in compact light emitting device packaging[J]. Optik, 2010,121(5): 467-470. doi:10.1016/j.ijleo.2008.08.005
8 QINGGUIH U, YININGM U. PIN photodiode array for free-space optical communication[J]. Photonic Network Communications, 2018, 36(2):224-229.doi:10.1007/s11107-018-0772-x
9 OIKAWAY,KUNWATSUKAH,YAMAMTOT, et al. Packing technology for a 10Gb/s photoreceiver module [J]. Journal of Lightwave Technology,1994, 12(2):343-352. doi: 10.1109/50.350587
10 YAMDAJ,MURAKAAMIY,SAKAIJ,et al. Characteristics of a hemispherical microlens for coupling between a semiconductor laser and single-mode fiber[J]. IEEE Quantum Electron,1980, 16(10): 1067-1072. doi: 10.1109/jqe.1980.1070355
11 LIG,HASHIMOTOY,MARUYAMAT,et al. High-efficiency optical coupling to planar photodiode using metal reflector loaded waveguide grating coupler[J]. Optical and Quantum Electronics, 2013, 45(7): 657-663. doi:10.1007/s11082-013-9674-4
12 CHENYu-shi. Coupling theory and simulation in high speed photodetector modules[J].Chinese Journal of Semiconductors, 2007, 28(2): 275-279.
13 SHIBAK,TAKEUCHIT, NAKATAT, et al. A robust 40Gb/s evanescently-coupled waveguide photodiode with high-efficiency for use in dual wavelengths:1310 and 1550 nm[R]. WuHan: Nov. 4-6, 2003. doi: 10.1117/12.520381
14 LUWen-long. Coupling alignment and post-weld offset of coaxial laser[D]. Changsha: Central South University, College of Mechanical and Electrical Engineering, 2012: 41-59.
15 LUSheng-qiang. Coupling model and law of coaxial semiconductor laser package[D]. Changsha: Central South University, College of Mechanical and Electrical Engineering, 2012: 12-20.
16 ZHUNing-hua, LIMing, HAOYue. Optoelectronic devices and integration technology[J]. Scientia Sinica: Information Science, 2016, 48(8): 1156-1174.
17 LIUZhao-qian. Technical error analysis of coaxial packaging of high-speed semiconductor photodetectors[J]. Electronic Measurement, 2016, 8(1): 42-44.
18 TIANLei. High-speed and high-sensitivity optical coupler[J]. Semiconductor Optoelectronics, 2014, 35(2): 221-224.

[1] WANG Ben, ZHU Long-biao, SHEN Zu-jun, CHEN Xiao-lin. Design of control system of LYP1050 rotary offset press[J]. Chinese Journal of Engineering Design, 2021, 28(1): 112-120.
[2] LI Shuai1, NIU Wen-tie1, LI Hong-tao1, FU Sheng-li2. Simulation and experiment study on the offset mechanism control algorithm based on cylindrical spiral method[J]. Chinese Journal of Engineering Design, 2015, 22(1): 42-48.
[3] LI Xiao-huo, GUO Na, ZHENG You-shan, WANG Jin-xing, YANG Jie. Study on mechanical properties of roadheader working mechanism for impacting and crushing rock under typical conditions[J]. Chinese Journal of Engineering Design, 2014, 21(5): 439-443.
[4] GUI Hai-lian, LI Yao, LI Qiang, LI Yu-gui, YANG Xia, HUANG Qing-xue. Dynamic research of neutral layer offset of medium plate in straightening process[J]. Chinese Journal of Engineering Design, 2014, 21(5): 444-448.
[5] QIN Shao-Wei, GAO Yun-Guo, SI Li-Na, YU Ping, NIE Xiao-Qian. Design and analysis of high precision three-dimensional fine-tuning frame for avalanche photodiode[J]. Chinese Journal of Engineering Design, 2010, 17(5): 345-349.