Optimization Design |
|
|
|
|
Optimum design for bearing parts of radiation well horizontal drilling rig based on DOE and finite element simulation |
SUN Shi-feng1, GAO Chang-qing1, YANG Bo1, XU Zheng-he2 |
1.School of Mechanical Engineering, University of Jinan, Jinan 250022, China 2.School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China |
|
|
Abstract In order to improve the safety and stability of bearing parts of radiation well horizontal drilling rig, the design of experiment (DOE) and finite element simulation technology were used to optimize the bearing parts. Orthogonal test method and ANSYS Workbench finite element statics simulation were used to optimize the layout of reinforcing ribs of the bearing system consisting of rotary platform, vertical bracket and transverse bracket. In this way, the optimal layout of reinforcing ribs for the bearing system was obtained. On this basis, the response surface optimization method based on the DOE was used to optimize the platform thickness, rib height and rib thickness of rotary platform, which further reduced the maximum equivalent stress, maximum deformation and mass of the rotary platform, and improved the safety and stability of the bearing system. The results showed that the optimal layout of reinforing ribs for the bearing system was as follow: the rotary platform used a vertical and horizontal rib, the vertical support used an X-shaped rib, and the horizontal support used a V-shaped rib. The optimal parameter combination of the rotary platform was that: the platform thickness was 11.2 mm, the height rib was 31.9 mm, and the rib thickness was 12.3 mm. Through the integration of DOE and finite element simulation technology, the optimization design of bearing parts of horizontal drilling rig is carried out, which provides a reference for the design of the solid prototype of horizontal drilling rig.
|
Received: 03 June 2019
Published: 28 December 2019
|
|
基于试验设计与有限元仿真的辐射井水平钻机承载部件优化设计
为了提升辐射井水平钻机承载部件的安全性与稳定性,运用试验设计(design of experiment,DOE)与有限元仿真技术对承载部件进行优化设计。通过正交试验法结合ANSYS Workbench有限元静力学仿真对由回转平台、立支架及横支架组成的承载系统的加强筋板布置形式进行优化设计,获得承载系统加强筋板的最优布局类型。在此基础上,运用基于试验设计的响应面优化法对回转平台的台面厚度、筋板高度及筋板厚度进行优化设计,进一步减小回转平台的最大等效应力、最大变形及质量,提升承载系统的安全性与稳定性。结果表明承载系统加强筋板的最优布局类型为:回转平台采用纵横筋板,立支架采用X形筋板,横支架采用V形筋板;回转平台的最优参数组合为:台面厚度为11.2 mm,筋板高度为31.9 mm,筋板厚度为12.3 mm。集成运用试验设计与有限元仿真技术对水平钻机承载部件进行优化设计的方法可为水平钻机实体样机设计提供一定的参考。
关键词:
水平钻机,
试验设计,
响应面优化法,
优化设计
|
|
[1] 王朝辉. 取水大口辐射井的施工与应用[J].内蒙古科技与经济,2015(11):76-77. doi:10.3969/j.issn.1007-6921. 2015.11.035 WANG Chao-hui. Construction and application of radiation wells with large intake[J]. Inner Mongolia Science & Technology and Economy, 2015(11): 76-77. [2] 李炯, 王瑜, 孔令镕, 等. 基于旋挖和水平定向钻进的辐射井成井实验研究[J].探矿工程(岩土钻掘工程),2018,45(10):127-131. doi:10.3969/j.issn.1672-7428.2018.10.25 LI Jiong, WANG Yu, KONG Ling-rong, et al. Experimental research on construction of radial collector wells by auger drilling and horizontal drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2018, 45(10): 127-131. [3] 尹书学, 高常青, 徐征和, 等. 基于 SAPB 的辐射井水平钻机方案设计研究[J].探矿工程(岩土钻掘工程),2016,43(10):103-107. doi:10.3969/j.issn.1672-7428.2016.10. 022 YIN Shu-xue, GAO Chang-qing, XU Zheng-he, et al. Scheme design of radiation well horizontal drilling machine based on SAPB[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2016, 43(10): 103-107. [4] 黄灿超, 吴刚, 郭世杰, 等. 基于Workbench的水平定向钻机大梁模态分析与优化设计[J].三峡大学学报(自然科学版),2015,37(3):69-72. doi:10.13393/j.cnki.issn. 1672-948X.2015.03.016 HUANG Chan-chao, WU Gang, GUO Shi-jie, et al. Modal analysis and optimization design for main beam of horizontal directional driller based on workbench[J]. Journal of China Three Gorges University(Natural Sciences), 2015, 37(3): 69-72. [5] 聂源基, 高常青, 徐征和, 等. 基于物质-场分析的农用钻机钻进功能创新[J].农业工程,2018,8(5):101-105. NIE Yuan-ji, GAO Chang-qing, XU Zheng-he, et al. Innovation design of drilling function of agricultural drilling rig based on substance-field analysis[J]. Agricultural Engineering, 2018, 8(5): 101-105. [6] 翟群杰. 基于虚拟样机技术的水平钻机仿真分析[J].机械工程与自动化,2018(3):75-76. doi:10.3969/j.issn. 1672-6413.2018.03.029 ZHAI Qun-jie. Horizontal drill simulation and analysis based on virtual prototype technology [J]. Mechanical Engineering & Automation, 2018(3): 75-76. [7] 李阳, 高常青, 杨波, 等. 基于SolidThinking Inspire的水平钻机机架设计[J]. 现代制造技术与装备, 2018(3): 6-8. doi:10.16107/j.cnki.mmte.2018.0098 LI Yan, GAO Chang-qing, YANG Bo, et al. Design of horizontal drilling machine frame based on SolidThinking Inspire[J]. Modern Manufacturing Technology and Equipment, 2018(3): 6-8. [8] LI S, LI Y, SHI J, et al. Optimizing the formulation of external-soil spray seeding with sludge using the orthogonal test method for slope ecological protection[J]. Ecological Engineering, 2017, 102: 527-535. doi:10. 1016/j.ecoleng.2017.02.060 [9] 尹辉俊, 张雯, 刘赟, 等. 基于正交试验法的某燃油箱设计[J].机械设计,2018,35(2):87-93. doi: 10.13841/j.cnki. jxsj.2018.02.016 YIN Hui-jun, ZHANG Wen, LIU Yun, et al. Design of a fuel tank based on orthogonal test method[J]. Journal of Machine Design, 2018, 35(2): 87-93. [10] 程海鹰, 石头, 杨涛. 垂直力加载下微变形梁的结构设计与优化[J].机械强度,2016,38(5):1108-1112. doi: 10. 16579/j.issn.1001.9669.2016.05.036 CHENG Hai-ying, SHI Tou, YANG Tao, et al. Micro-deformation beam??s construction design and optimization on vertical force loading [J]. Journal of Mechanical Strength, 2016, 38(5): 1108-1112. [11] 王文韬, 于忠海, 王佳茂. 基于ANSYS Workbench的车载吊运装置优化[J].农业装备与车辆工程,2018,56(8): 63-65. doi: 10.3969/j.issn.1673-3142.2018.08.016 WANG Wen-tao, YU Zhong-hai, WANG Jia-mao, et al. Optimization of vehicle mounted lifting device based on ANSYS Workbench[J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(8): 63-65. [12] 王凤山, 韦毓鹏, 田伟, 等. 精密加工中心床身设计[J]. 世界制造技术与装备市场,2016(1):87-90. doi: 10. 3969/j.issn.1015-4809.2016.01.013 WANG Feng-shan, WEI Yu-peng, TIAN Wei, et al. Bed design of precision machining center[J]. World Manufacturing Engineering & Market, 2016(1): 87-90. [13] 鞠家全, 邱自学, 崔德友, 等. 基于正交试验的机床移动横梁多目标优化设计[J].机械强度,2018,40(2): 356-362. doi: 10.16579/j.issn.1001.9669.2018.02.017 JU Jia-quan, QIU Zi-xue, CUI De-you, et al. Multi-targets optimization design for moving crossbeam of machine tool based on orthogonal experimental method [J]. Journal of Mechanical Strength, 2018, 40(2): 356-362. [14] 黄静, 陈再良. 大型机床工作台的动态性能研究及结构优化[J].制造技术与机床,2014(11):62-65. doi:10.3969/j.issn.1005-2402.2014.11.021 HUANG Jing, CHEN Zai-liang. Dynamic performance research and structure optimization on the large working table of the machine tool[J]. Manufacturing Technology & Machine Tool, 2014(11): 62-65. [15] 田亚峰, 王礼明, 李正羊, 等. 基于拓扑优化的龙门数控机床工作台筋板设计与分析[J].组合机床与自动化加工技术,2015(7):57-60. doi:10.13462/j.cnki.mmtamt.2015. 07.016 TIAN Ya-feng, WANG Li-ming, LI Zheng-yang, et al. Design and analysis of worktable stiffened plates of CNC gantry machine tool based on topological optimization[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(7): 57-60. [16] 王妮娜, 张广鹏. 回转工作台结构优化设计方法[J]. 制造业自动化,2017,39(4):125-127,142. doi:10.3969/j.issn. 1009-0134.2017.04.031 WANG Ni-na, ZHANG Guang-peng. The design method of rotary table structure optimization [J]. Manufacturing Automation, 2017, 39(4): 125-127, 142. [17] 郑彬, 张敬东. 基于响应面法的龙门加工中心回转工作台结构优化设计[J].机械强度,2018,40(5):1131-1137. doi: 10.16579/j.issn.1001.9669.2018.05.018 ZHENG Bin, ZHANG Jing-dong. Structure optimization design for the rotary worktable of gantry machining center based on response surface methodology [J]. Journal of Mechanical Strength, 2018, 40(5): 1131-1137. [18] 方浩, 王彦伟. 基于动态灵敏度的数控机床立柱优化设计[J].武汉工程大学学报,2018,40(5):569-574. doi:10. 3969/j.issn.1674-2869.2018.05.018 FANG Hao, WANG Yan-wei. Optimization design of machining center column based on dynamic sensitivity [J]. Journal of Wuhan Institute of Technology, 2018, 40(5): 569-574. [19] 王开德, 韩凯凯. 基于ANSYS Workbench的磨床立柱结构分析与优化设计[J].制造业自动化,2018,40(10): 64-69. doi: 10.3969/j.issn.1009-0134.2018.10.016 WANG Kai-de, HAN Kai-kai. Analysis and optimization design of grinder column based on ANSYS Workbench [J]. Manufacturing Automation, 2018, 40(10): 64-69. [20] 邓涛, 昃向博, 吕守堂, 等. 基于筋板布局的立柱结构优化设计[J].现代制造技术与装备,2018(12):76-79. doi:10.3969/j.issn.1673-5587.2018.12.039 DENG Tao, ZE Xiang-bo, Lü Shou-tang, et al. Optimum design of column structure based on stiffened plate layout[J]. Modern Manufacturing Technology and Equipment, 2018(12): 76-79. [21] 赵德宏, 季晓俊, 陆峰, 等. 基于ICM法的龙门式加工中心焊接横梁结构设计与优化[J].沈阳建筑大学学报(自然科学版),2017,33(6):1116-1123. doi:10.11717/j.issn:2095-1922.2017.06.19 ZHAO De-hong, JI Xiao-jun, LU Feng, et al. Design and optimization of gantry machining center welding crossbeam structure based on the ICM [J]. Journal of Shenyang Jianzhu University (Natural Science), 2017, 33(6): 1116-1123. [22] 邱自学, 高志来, 任东, 等. 桥式龙门铣床横梁方案设计及其多目标决策方法 [J]. 计算机集成制造系统, 2019,25(10):2503-2512. doi:10.13196/j.cims.2019.10.010 QIU Zi-xue, GAO Zhi-lai, REN Dong, et al. Study on design of crossbeam scheme and its multi-objective decision-making method for bridge gantry milling machine [J]. Computer Integrated Manufacturing System, 2019, 25(10): 2503-2512. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|